Turing.jl中基于评分函数估计器的变分推断实现
变分推断与梯度估计方法概述
变分推断(VI)是一种将贝叶斯推断问题转化为优化问题的近似方法。在Turing.jl生态系统中,变分推断通常通过AdvancedVI.jl包实现。传统实现主要依赖于重参数化梯度(Reparameterization Gradient),这种方法要求模型是可微的。
然而,在实际应用中,我们经常会遇到包含不可微组件的模型,例如物理模拟器或黑盒函数。这时就需要使用评分函数估计器(Score Function Estimator),也称为强化学习(REINFORCE)算法。这种方法不要求模型可微,只需要能够计算概率密度。
评分函数估计器的数学原理
评分函数估计器的核心思想是利用对数导数技巧来估计梯度。对于变分分布qφ(θ)和模型联合概率p(θ,x),ELBO(证据下界)的梯度可以表示为:
∇φELBO = E[∇φlog qφ(θ) * (log p(θ,x) - log qφ(θ))]
其中:
- log p(θ,x)是模型联合概率的对数
- log qφ(θ)是变分分布的对数概率
- ∇φlog qφ(θ)是评分函数
这种方法的关键优势在于它不要求p(θ,x)对θ可微,只需要能够计算概率密度。
在Turing.jl中的实现方案
在Turing.jl生态中实现评分函数估计器需要考虑以下几个技术要点:
-
变分分布的处理:Turing使用Bijectors.jl处理变分分布的变换,可以方便地计算log qφ(θ)及其梯度。
-
模型概率计算:通过DynamicPPL提供的LogDensityFunction接口可以获取模型的联合概率log p(θ,x)。
-
梯度估计实现:需要在AdvancedVI.jl中实现新的AbstractVariationalObjective子类型,并重写estimate_gradient!方法。
混合梯度估计策略
理想情况下,我们应该实现混合梯度估计策略:
- 对可微部分使用重参数化梯度
- 对不可微部分使用评分函数估计器
这种混合策略可以结合两种方法的优点,但目前Turing.jl的自动微分系统还不完全支持这种混合模式。可能的实现路径包括:
- 扩展Turing的混合自动微分系统,允许用户标记特定分布使用评分函数估计
- 利用DifferentiableExpectations.jl等专门处理期望梯度估计的包
实际应用建议
对于需要在Turing中使用评分函数估计器的用户,当前可以:
- 使用AdvancedVI.jl的v0.3.0版本基础设施
- 实现自定义的变分目标类型
- 对于完全不可微模型,使用纯评分函数估计器
未来随着Turing生态的发展,预计会提供更完善的混合梯度估计支持,使处理包含不可微组件的模型更加方便。
总结
评分函数估计器为Turing.jl处理不可微模型提供了重要扩展能力。虽然当前实现还需要一些手动工作,但随着AdvancedVI.jl v0.3.0的发布和生态系统的完善,这一功能将变得更加易用和强大。对于包含复杂物理模拟器或其他黑盒组件的贝叶斯模型,这开辟了新的可能性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00