探索基因组中的选择信号:selscan 项目推荐
2024-09-20 11:24:36作者:邬祺芯Juliet
项目介绍
selscan 是一款用于计算基于扩展同源性(EHH)的正选择扫描程序。该项目由 Zachary A Szpiech 开发,旨在帮助研究人员在基因组中识别正选择信号。selscan 支持多种统计方法,包括 EHH、iHS、XP-EHH、nSL、XP-nSL 和 iHH12,适用于不同类型的基因组数据分析。
项目技术分析
selscan 的核心技术基于扩展同源性(EHH)及其衍生统计量,如 iHS、XP-EHH 等。这些统计量通过分析基因组中的同源性扩展来识别潜在的正选择区域。项目支持多线程计算,能够高效处理大规模基因组数据。此外,selscan 还支持未分相数据的分析,提供了 --unphased 标志,使得其在处理复杂数据时更加灵活。
项目及技术应用场景
selscan 在多个生物学研究领域中具有广泛的应用场景:
- 人类遗传学:用于检测人类基因组中的正选择信号,帮助理解人类进化过程中的适应性变化。
- 群体遗传学:分析不同群体间的基因组差异,识别可能的适应性基因。
- 物种适应性研究:如高海拔适应性研究,通过 XP-EHH 等统计量识别特定环境下的适应性基因。
- 疾病关联研究:通过检测基因组中的选择信号,辅助识别与疾病相关的基因区域。
项目特点
- 多统计量支持:selscan 支持多种基于 EHH 的统计量,包括 iHS、XP-EHH、nSL 等,满足不同研究需求。
- 未分相数据支持:通过
--unphased标志,selscan 能够处理未分相的基因组数据,提高了数据处理的灵活性。 - 多线程计算:项目支持多线程计算,能够高效处理大规模基因组数据,提升计算效率。
- 物理距离支持:通过
--pmap标志,selscan 可以使用物理距离而非遗传图谱进行计算,适用于缺乏遗传图谱的数据。 - 详细输出:selscan 提供了详细的输出信息,包括左右扩展的同源性积分,有助于进一步的分析和机器学习模型的构建。
结语
selscan 作为一款功能强大的基因组选择信号扫描工具,凭借其多统计量支持、未分相数据处理能力以及高效的多线程计算,成为生物信息学研究中的重要工具。无论是在人类遗传学、群体遗传学还是物种适应性研究中,selscan 都能提供有力的支持。如果你正在寻找一款能够高效识别基因组中正选择信号的工具,selscan 绝对值得一试。
参考文献:
- ZA Szpiech (2021) selscan 2.0: scanning for sweeps in unphased data. Bioinformatics 40: btae006.
- ZA Szpiech and RD Hernandez (2014) selscan: an efficient multi-threaded program to calculate EHH-based scans for positive selection. Molecular Biology and Evolution 31: 2824-2827.
- ZA Szpiech et al. (2021) Application of a novel haplotype-based scan for local adaptation to study high-altitude adaptation in rhesus macaques. Evolution Letters doi: https://doi.org/10.1002/evl3.232
- R Torres et al. (2018) Human demographic history has amplified the effects of background selection across the genome. PLoS Genetics 15: e1007898.
- N Garud et al. (2015) Recent selective sweeps in North American Drosophila melanogaster show signatures of soft sweeps. PLoS Genetics 11: 1–32.
- A Ferrer-Admetlla et al. (2014) On detecting incomplete soft or hard selective sweeps using haplotype structure. Molecular Biology and Evolution 31: 1275-1291.
- K Wagh et al. (2012) Lactase Persistence and Lipid Pathway Selection in the Maasai. PloS ONE 7: e44751.
- PC Sabeti et al. (2007) Genome-wide detection and characterization of positive selection in human populations. Nature 449: 913–918.
- BF Voight et al. (2006) A map of recent positive selection in the human genome. PLoS Biology 4: e72.
- PC Sabeti et al. (2002) Detecting recent positive selection in the human genome from haplotype structure. Nature 419: 832–837.
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
475
3.54 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
225
94
暂无简介
Dart
725
175
React Native鸿蒙化仓库
JavaScript
287
339
Ascend Extension for PyTorch
Python
284
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19