PS-MT 开源项目使用教程
2024-09-25 15:50:59作者:毕习沙Eudora
1. 项目介绍
PS-MT(Perturbed and Strict Mean Teachers)是一个用于半监督语义分割的开源项目,由Yuyuan Liu等人在2022年的CVPR会议上发表。该项目通过引入“扰动”和“严格”的Mean Teacher机制,显著提升了在标注数据稀缺情况下的语义分割性能。PS-MT的核心思想是通过两个略有差异的网络(学生与教师)来增强自我训练的能力,同时通过在输入数据中加入随机扰动和保持教师模型更新过程中的严格性,来提高模型的稳定性和泛化能力。
2. 项目快速启动
安装依赖
首先,确保你已经安装了Python和相关的依赖库。你可以使用以下命令安装所需的依赖:
pip install -r requirements.txt
下载数据集
PS-MT支持Pascal VOC12和CityScapes数据集。你可以从官方网站下载这些数据集,并将其放置在项目的data目录下。
配置文件
在项目的根目录下,找到并编辑ps-mt.yml配置文件,设置你的数据集路径和其他训练参数。
启动训练
使用以下命令启动训练过程:
python train.py --config ps-mt.yml
验证模型
训练完成后,你可以使用以下命令验证模型的性能:
python eval.py --config ps-mt.yml
3. 应用案例和最佳实践
应用案例
PS-MT在多个领域都有广泛的应用,特别是在标注数据稀缺的情况下。以下是一些典型的应用案例:
- 卫星图像分析:在卫星图像中,手动标注的成本极高。PS-MT可以通过利用未标注的数据,显著提升图像分割的精度。
 - 自动驾驶汽车的地图构建:自动驾驶汽车需要高精度的地图数据,PS-MT可以帮助在有限的标注数据下,提升地图构建的准确性。
 - 医学影像分割:在医学影像分析中,标注数据通常非常有限且昂贵。PS-MT可以有效利用未标注的数据,提升分割模型的性能。
 
最佳实践
- 数据增强:在训练过程中,使用数据增强技术(如随机裁剪、旋转等)可以进一步提升模型的泛化能力。
 - 超参数调优:通过调整学习率、批量大小等超参数,可以优化模型的训练效果。
 - 多GPU训练:使用多GPU并行训练可以加速训练过程,特别是在处理大规模数据集时。
 
4. 典型生态项目
PS-MT作为一个开源项目,与其他计算机视觉和深度学习项目有着紧密的联系。以下是一些典型的生态项目:
- Deeplabv3+:PS-MT基于Deeplabv3+模型进行开发,Deeplabv3+是一个广泛使用的语义分割模型。
 - WandB:PS-MT使用WandB进行训练过程的可视化和日志记录,WandB是一个强大的实验跟踪工具。
 - CCT:PS-MT的代码基于CCT库进行优化,CCT是一个用于半监督学习的开源库。
 
通过结合这些生态项目,PS-MT能够提供一个完整的解决方案,帮助研究者和开发者更高效地进行半监督语义分割任务。
登录后查看全文 
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
最新内容推荐
 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443