PS-MT 开源项目使用教程
2024-09-25 15:50:59作者:毕习沙Eudora
1. 项目介绍
PS-MT(Perturbed and Strict Mean Teachers)是一个用于半监督语义分割的开源项目,由Yuyuan Liu等人在2022年的CVPR会议上发表。该项目通过引入“扰动”和“严格”的Mean Teacher机制,显著提升了在标注数据稀缺情况下的语义分割性能。PS-MT的核心思想是通过两个略有差异的网络(学生与教师)来增强自我训练的能力,同时通过在输入数据中加入随机扰动和保持教师模型更新过程中的严格性,来提高模型的稳定性和泛化能力。
2. 项目快速启动
安装依赖
首先,确保你已经安装了Python和相关的依赖库。你可以使用以下命令安装所需的依赖:
pip install -r requirements.txt
下载数据集
PS-MT支持Pascal VOC12和CityScapes数据集。你可以从官方网站下载这些数据集,并将其放置在项目的data
目录下。
配置文件
在项目的根目录下,找到并编辑ps-mt.yml
配置文件,设置你的数据集路径和其他训练参数。
启动训练
使用以下命令启动训练过程:
python train.py --config ps-mt.yml
验证模型
训练完成后,你可以使用以下命令验证模型的性能:
python eval.py --config ps-mt.yml
3. 应用案例和最佳实践
应用案例
PS-MT在多个领域都有广泛的应用,特别是在标注数据稀缺的情况下。以下是一些典型的应用案例:
- 卫星图像分析:在卫星图像中,手动标注的成本极高。PS-MT可以通过利用未标注的数据,显著提升图像分割的精度。
- 自动驾驶汽车的地图构建:自动驾驶汽车需要高精度的地图数据,PS-MT可以帮助在有限的标注数据下,提升地图构建的准确性。
- 医学影像分割:在医学影像分析中,标注数据通常非常有限且昂贵。PS-MT可以有效利用未标注的数据,提升分割模型的性能。
最佳实践
- 数据增强:在训练过程中,使用数据增强技术(如随机裁剪、旋转等)可以进一步提升模型的泛化能力。
- 超参数调优:通过调整学习率、批量大小等超参数,可以优化模型的训练效果。
- 多GPU训练:使用多GPU并行训练可以加速训练过程,特别是在处理大规模数据集时。
4. 典型生态项目
PS-MT作为一个开源项目,与其他计算机视觉和深度学习项目有着紧密的联系。以下是一些典型的生态项目:
- Deeplabv3+:PS-MT基于Deeplabv3+模型进行开发,Deeplabv3+是一个广泛使用的语义分割模型。
- WandB:PS-MT使用WandB进行训练过程的可视化和日志记录,WandB是一个强大的实验跟踪工具。
- CCT:PS-MT的代码基于CCT库进行优化,CCT是一个用于半监督学习的开源库。
通过结合这些生态项目,PS-MT能够提供一个完整的解决方案,帮助研究者和开发者更高效地进行半监督语义分割任务。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++098AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
203
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
84

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133