PS-MT 开源项目使用教程
2024-09-25 20:52:41作者:毕习沙Eudora
1. 项目介绍
PS-MT(Perturbed and Strict Mean Teachers)是一个用于半监督语义分割的开源项目,由Yuyuan Liu等人在2022年的CVPR会议上发表。该项目通过引入“扰动”和“严格”的Mean Teacher机制,显著提升了在标注数据稀缺情况下的语义分割性能。PS-MT的核心思想是通过两个略有差异的网络(学生与教师)来增强自我训练的能力,同时通过在输入数据中加入随机扰动和保持教师模型更新过程中的严格性,来提高模型的稳定性和泛化能力。
2. 项目快速启动
安装依赖
首先,确保你已经安装了Python和相关的依赖库。你可以使用以下命令安装所需的依赖:
pip install -r requirements.txt
下载数据集
PS-MT支持Pascal VOC12和CityScapes数据集。你可以从官方网站下载这些数据集,并将其放置在项目的data目录下。
配置文件
在项目的根目录下,找到并编辑ps-mt.yml配置文件,设置你的数据集路径和其他训练参数。
启动训练
使用以下命令启动训练过程:
python train.py --config ps-mt.yml
验证模型
训练完成后,你可以使用以下命令验证模型的性能:
python eval.py --config ps-mt.yml
3. 应用案例和最佳实践
应用案例
PS-MT在多个领域都有广泛的应用,特别是在标注数据稀缺的情况下。以下是一些典型的应用案例:
- 卫星图像分析:在卫星图像中,手动标注的成本极高。PS-MT可以通过利用未标注的数据,显著提升图像分割的精度。
- 自动驾驶汽车的地图构建:自动驾驶汽车需要高精度的地图数据,PS-MT可以帮助在有限的标注数据下,提升地图构建的准确性。
- 医学影像分割:在医学影像分析中,标注数据通常非常有限且昂贵。PS-MT可以有效利用未标注的数据,提升分割模型的性能。
最佳实践
- 数据增强:在训练过程中,使用数据增强技术(如随机裁剪、旋转等)可以进一步提升模型的泛化能力。
- 超参数调优:通过调整学习率、批量大小等超参数,可以优化模型的训练效果。
- 多GPU训练:使用多GPU并行训练可以加速训练过程,特别是在处理大规模数据集时。
4. 典型生态项目
PS-MT作为一个开源项目,与其他计算机视觉和深度学习项目有着紧密的联系。以下是一些典型的生态项目:
- Deeplabv3+:PS-MT基于Deeplabv3+模型进行开发,Deeplabv3+是一个广泛使用的语义分割模型。
- WandB:PS-MT使用WandB进行训练过程的可视化和日志记录,WandB是一个强大的实验跟踪工具。
- CCT:PS-MT的代码基于CCT库进行优化,CCT是一个用于半监督学习的开源库。
通过结合这些生态项目,PS-MT能够提供一个完整的解决方案,帮助研究者和开发者更高效地进行半监督语义分割任务。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
445
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
823
398
Ascend Extension for PyTorch
Python
251
285
React Native鸿蒙化仓库
JavaScript
277
329
暂无简介
Dart
702
165
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
141
51
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
557
111