Py-Shiny v1.4.0 版本发布:增强应用状态保存与聊天组件功能
Py-Shiny 是一个基于 Python 的 Web 应用框架,它允许开发者使用 Python 快速构建交互式 Web 应用程序。该框架特别适合数据科学家和分析师,因为它提供了简单直观的 API 来创建复杂的交互式数据可视化界面。
应用状态保存功能
本次 v1.4.0 版本最显著的改进是引入了应用状态保存(Bookmarking)功能。这一功能允许用户保存当前应用的状态,并在之后恢复该状态。对于需要长时间运行或需要保存中间结果的应用场景特别有用。
在 Shiny Core 模式下,开发者可以通过在创建应用对象时设置 shiny.App(bookmark_store=) 来启用状态保存功能。而在更简洁的 Express 模式下,则需要在应用初始化时使用 shiny.express.app_opts(bookmark_store=) 进行配置。
这一功能的实现涉及多个技术层面的改进,包括状态序列化、URL 编码处理以及状态恢复机制等。开发者现在可以轻松地为用户提供"保存当前状态"和"恢复上次状态"的功能,大大提升了用户体验。
聊天组件功能增强
ui.Chat() 组件在此版本中获得了多项重要更新:
-
状态保存支持:新增的
.enable_bookmarking(client)方法允许聊天组件保存和恢复消息历史及客户端状态。这意味着即使用户刷新页面或稍后返回应用,也能看到之前的对话记录。 -
富交互消息:现在聊天消息中可以嵌入各种 Shiny UI 元素,如输入控件(
ui.input_select())和输出渲染器(render.DataGrid())。这为构建更复杂的对话式界面提供了可能,例如在聊天过程中收集用户偏好或展示动态数据。 -
流式消息处理改进:新增的
.message_stream_context()方法提供了更灵活的流式消息处理方式,支持嵌套流和内容替换功能。这对于需要动态更新消息内容或构建多级对话流的场景特别有用。
其他重要改进
ui.MarkdownStream() 组件也获得了多项增强:
- 新增
.latest_stream属性取代了原有的.get_latest_stream_result()方法,提供了更直观的结果访问方式 - 默认最大宽度设置为 680px 并水平居中,提升了长文本的可读性
- 修复了宽度和高度设置不生效的问题
导航栏组件(ui.page_navbar() 和 ui.navset_bar())现在能正确应用通过 ui.navbar_options() 设置的主题和其他属性,解决了之前版本中的样式应用不一致问题。
向后兼容性说明
需要注意的是,Express 模式下的 app_opts() 现在要求所有参数都必须使用关键字形式传递。如果现有代码中使用的是位置参数,需要进行相应调整。
此外,<main> 区域在 ui.page_sidebar() 和带侧边栏的 ui.page_navbar() 中的填充行为也得到了修正,现在会严格遵循 fillable 参数的设置。
总结
Py-Shiny v1.4.0 版本通过引入应用状态保存功能和增强聊天组件,进一步扩展了框架的应用场景。这些改进使得开发者能够构建更持久、更交互式的 Web 应用,特别适合需要保存用户进度或实现复杂对话流程的场景。同时,对现有组件的多项修复和优化也提升了框架的稳定性和一致性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00