Mercury 开源项目教程
2024-09-16 18:47:32作者:农烁颖Land
1. 项目介绍
Mercury 是一个开源项目,旨在简化数据科学工作流程,特别是 Jupyter Notebook 的共享和部署。通过 Mercury,用户可以轻松地将 Jupyter Notebook 转换为 Web 应用程序,并将其部署到云端或本地服务器。Mercury 支持多种数据科学工具和库,如 Pandas、NumPy、Matplotlib 等,使得数据科学家和开发者能够更高效地进行数据分析和可视化。
2. 项目快速启动
安装 Mercury
首先,确保你已经安装了 Python 和 pip。然后,使用以下命令安装 Mercury:
pip install mljar-mercury
创建一个简单的 Mercury 应用
-
创建一个新的 Jupyter Notebook 文件,例如
my_notebook.ipynb。 -
在 Notebook 中添加一些代码,例如:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# 生成一些随机数据
data = np.random.randn(100, 2)
df = pd.DataFrame(data, columns=['X', 'Y'])
# 绘制散点图
plt.scatter(df['X'], df['Y'])
plt.title('Random Scatter Plot')
plt.show()
- 在 Notebook 的第一个单元格中添加以下元数据,以配置 Mercury:
{
"title": "My First Mercury App",
"description": "A simple scatter plot example",
"show_code": true,
"show_output": true
}
- 保存 Notebook 文件。
启动 Mercury 服务器
在终端中运行以下命令启动 Mercury 服务器:
mercury run my_notebook.ipynb
- 打开浏览器,访问
http://127.0.0.1:8000,你将看到你的 Mercury 应用已经成功运行。
3. 应用案例和最佳实践
应用案例
- 数据分析报告:使用 Mercury 将复杂的数据分析报告转换为 Web 应用,方便团队成员查看和交互。
- 机器学习模型部署:将训练好的机器学习模型封装在 Jupyter Notebook 中,并通过 Mercury 部署为 Web 服务,实现模型的在线预测。
- 教育培训:将数据科学课程的 Jupyter Notebook 转换为 Web 应用,方便学生在线学习和实践。
最佳实践
- 模块化代码:将代码模块化,便于维护和扩展。
- 添加用户输入:使用 Mercury 的表单功能,允许用户输入参数,动态生成结果。
- 优化性能:对于大数据集或复杂计算,考虑使用并行计算或优化算法。
4. 典型生态项目
- Jupyter Notebook:Mercury 的核心是基于 Jupyter Notebook,因此与 Jupyter 生态系统高度兼容。
- Pandas:用于数据处理和分析。
- Matplotlib 和 Seaborn:用于数据可视化。
- Scikit-learn:用于机器学习模型的训练和评估。
- Flask 和 Django:用于构建更复杂的 Web 应用,与 Mercury 结合使用可以实现更强大的功能。
通过以上步骤,你可以快速上手 Mercury 项目,并将其应用于各种数据科学和机器学习任务中。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0130
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
495
3.63 K
Ascend Extension for PyTorch
Python
300
336
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
475
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
301
127
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言测试用例。
Cangjie
43
871