Smile机器学习库中Ridge回归的数值稳定性问题分析
2025-06-03 03:19:42作者:胡易黎Nicole
问题背景
在使用Smile机器学习库进行Ridge回归分析时,开发者可能会遇到一个典型的数值计算问题:LAPACK GETRF error code: -4错误。这个问题通常出现在特定数据切片上,表现为算法无法完成矩阵分解运算。
问题根源
经过深入分析,发现该问题源于特征列中存在全等值的情况。具体来说,当某一特征列的所有值完全相同时,理论上应该被识别为常数特征并被过滤掉。然而在实际计算中,由于浮点运算的精度限制,导致标准偏差计算出现异常。
技术细节
在标准偏差计算过程中,当特征值完全相同时,数学期望的方差应该为零。但在浮点运算中,可能会出现以下情况:
val c = 62571.43
val m = 48
val column = Array.fill(m)(c)
val sum = column.sum // 实际计算结果可能不是精确的数学期望
val mean = sum / m // 62571.43000000003
val sumsq = column.map(v => v * v).sum // 1.8792882490775534E11
val variance = sumsq / m - mean * mean // 结果为-4.76837158203125E-7
val sd = Math.sqrt(variance) // 对负数开方得到NaN
这种计算方式导致了标准偏差变为NaN,而非预期的零值,从而使后续的常数特征检测失效。
解决方案
Smile库的维护者已经针对此问题进行了修复,主要措施包括:
- 在列标准偏差计算(colSds)中添加了安全保护机制
- 确保在特征值完全相同的特殊情况下能够正确识别并处理
相关扩展问题
在进一步测试中,还发现当Ridge回归的lambda参数设置为0时,会触发类似的LAPACK错误。这实际上是因为:
- lambda=0时,Ridge回归退化为普通最小二乘(OLS)回归
- 当数据存在共线性时,OLS回归的矩阵可能不可逆
- 正确的做法是直接使用专门的OLS实现,而非通过Ridge回归模拟
最佳实践建议
- 在使用Ridge回归前,应对数据进行预处理,检查并移除常数特征
- 对于lambda=0的情况,应直接使用线性回归而非Ridge回归
- 考虑使用更鲁棒的数值计算方法来处理潜在的浮点精度问题
- 在数据预处理阶段,可以添加额外的检查来识别并处理接近常数的特征
总结
数值稳定性是机器学习算法实现中的重要考量。Smile库在处理Ridge回归时遇到的这个问题,很好地展示了浮点运算在实际应用中的复杂性。开发者在使用机器学习库时,应当充分理解算法背后的数学原理和数值计算特性,才能更好地处理各种边界情况。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
403
3.14 K
Ascend Extension for PyTorch
Python
224
250
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219