AFLplusplus中afl-clang-fast转换bitcode到ELF失败问题分析
问题背景
在使用AFLplusplus的afl-clang-fast工具链时,开发者尝试将LLVM bitcode转换为可执行ELF文件时遇到了问题。具体表现为在链接阶段出现符号冲突或缺失,导致编译失败。这个问题在不同版本的LLVM(从10到17)中都存在,但表现略有差异。
问题现象
当开发者使用以下命令序列时会出现问题:
- 首先使用afl-clang-fast生成bitcode:
afl-clang-fast -c -emit-llvm -o test.bc test.c
- 然后尝试将bitcode转换为可执行文件:
afl-clang-fast -o test_elf test.bc
在LLVM 17环境下,会出现断言失败错误,提示sancov.module_ctor_trace_pc_guard相关符号问题。而在LLVM 10环境下,错误信息更明确,显示链接器找不到__start___sancov_guards和__stop___sancov_guards等符号定义。
根本原因
问题的核心在于afl-clang-fast的工作机制。当第二次使用afl-clang-fast链接bitcode时,工具会尝试再次进行插桩操作,这导致了以下问题:
-
重复插桩:第一次编译生成bitcode时已经插入了SanitizerCoverage相关代码,第二次链接时又尝试插入相同的插桩代码,造成符号冲突。
-
符号重复定义:特别是
sancov.module_ctor_trace_pc_guard等构造函数相关符号会被多次定义。 -
运行时支持缺失:SanitizerCoverage需要特定的运行时支持,直接链接bitcode时这些支持没有被正确包含。
解决方案
正确的做法是避免让afl-clang-fast进行二次插桩。可以采用以下任一方法:
- 使用普通clang链接:
clang -o test_elf test.bc /path/to/afl-compiler-rt.o
- 分步编译:
# 生成目标文件
afl-clang-fast -c -o test.o test.c
# 直接链接
afl-clang-fast -o test_elf test.o
技术细节
AFL++的插桩过程实际上分为几个关键步骤:
- 前端插桩:通过LLVM pass在IR层面插入覆盖率跟踪代码
- 运行时支持:链接afl-compiler-rt.o提供必要的运行时函数
- 构造函数注册:通过module构造函数确保插桩代码在程序启动时初始化
当重复插桩时,这些机制会互相干扰,特别是构造函数相关的符号会冲突。这也是为什么在LLVM 17中会直接触发断言失败,而在较早版本中表现为链接错误。
最佳实践建议
- 对于需要处理bitcode的工作流,建议明确区分插桩阶段和链接阶段
- 如果需要多次处理bitcode,考虑使用LLVM的opt工具手动控制pass的应用
- 保持AFL++版本更新,新版通常会修复这类兼容性问题
- 对于复杂项目,考虑使用AFL++的LTO(链接时优化)模式,它可以更好地处理整个程序的插桩
理解这些底层机制有助于开发者更有效地使用AFL++进行模糊测试,特别是在需要自定义插桩或处理bitcode的场景下。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00