AFLplusplus中afl-clang-fast处理Bitcode转ELF的问题分析
背景介绍
AFLplusplus作为著名的模糊测试工具,其afl-clang-fast编译器前端在将LLVM bitcode转换为可执行ELF文件时可能出现问题。本文将深入分析这一现象的技术原因,并探讨正确的使用方法。
问题现象
当用户尝试使用afl-clang-fast将bitcode转换为ELF可执行文件时,会遇到两种不同类型的错误:
-
在较新版本LLVM(如17)中:会出现断言失败错误,提示
sancov.module_ctor_trace_pc_guard
相关断言不满足,导致编译器崩溃。 -
在较旧版本LLVM(如10)中:会出现链接器错误,提示
sancov_guards
相关符号未定义,包括__start___sancov_guards
和__stop___sancov_guards
等。
根本原因分析
经过深入分析,发现问题的核心在于重复插桩:
-
当用户首先使用
afl-clang-fast -c -emit-llvm
生成bitcode时,AFL已经完成了第一次插桩,在bitcode中植入了SanitizerCoverage相关的代码和符号。 -
随后当用户再次使用
afl-clang-fast
链接bitcode时,编译器会尝试进行第二次插桩,这导致了符号冲突和重复定义问题。 -
在LLVM 10中表现为链接器找不到符号,而在LLVM 17中则直接触发了内部断言失败。
正确使用方法
正确的做法应该是:
-
使用常规clang而非afl-clang-fast来链接已插桩的bitcode:
clang -o test_elf test.bc /path/to/afl-compiler-rt.o
-
这样避免了重复插桩,同时通过显式链接AFL的运行时库(afl-compiler-rt.o)来提供必要的运行时支持。
版本兼容性说明
值得注意的是,不同LLVM版本间的插桩机制存在差异:
-
LLVM 10使用较旧的trace-pc-guard插桩方式,会产生
sancov_guards
相关符号。 -
LLVM 17使用更现代的PCGUARD插桩方式,内部实现更为复杂。
-
不同版本生成的插桩代码互不兼容,不应混用。
技术建议
对于需要在bitcode层面进行操作的用户,建议:
-
明确区分插桩阶段和链接阶段,避免重复插桩。
-
保持工具链版本一致性,特别是LLVM版本与AFL++版本的匹配。
-
对于复杂的bitcode处理流程,考虑使用
-fno-sanitize=all
等选项临时禁用插桩。 -
在调试时,可以使用
nm
等工具检查目标文件中的符号,帮助诊断问题。
总结
AFL++的插桩机制是其高效模糊测试的核心,理解其工作原理对于解决类似问题至关重要。通过正确区分插桩和链接阶段,并选择合适的工具链组合,可以避免这类bitcode转换问题,充分发挥AFL++的强大功能。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









