AFLplusplus中afl-clang-fast处理Bitcode转ELF的问题分析
背景介绍
AFLplusplus作为著名的模糊测试工具,其afl-clang-fast编译器前端在将LLVM bitcode转换为可执行ELF文件时可能出现问题。本文将深入分析这一现象的技术原因,并探讨正确的使用方法。
问题现象
当用户尝试使用afl-clang-fast将bitcode转换为ELF可执行文件时,会遇到两种不同类型的错误:
-
在较新版本LLVM(如17)中:会出现断言失败错误,提示
sancov.module_ctor_trace_pc_guard相关断言不满足,导致编译器崩溃。 -
在较旧版本LLVM(如10)中:会出现链接器错误,提示
sancov_guards相关符号未定义,包括__start___sancov_guards和__stop___sancov_guards等。
根本原因分析
经过深入分析,发现问题的核心在于重复插桩:
-
当用户首先使用
afl-clang-fast -c -emit-llvm生成bitcode时,AFL已经完成了第一次插桩,在bitcode中植入了SanitizerCoverage相关的代码和符号。 -
随后当用户再次使用
afl-clang-fast链接bitcode时,编译器会尝试进行第二次插桩,这导致了符号冲突和重复定义问题。 -
在LLVM 10中表现为链接器找不到符号,而在LLVM 17中则直接触发了内部断言失败。
正确使用方法
正确的做法应该是:
-
使用常规clang而非afl-clang-fast来链接已插桩的bitcode:
clang -o test_elf test.bc /path/to/afl-compiler-rt.o -
这样避免了重复插桩,同时通过显式链接AFL的运行时库(afl-compiler-rt.o)来提供必要的运行时支持。
版本兼容性说明
值得注意的是,不同LLVM版本间的插桩机制存在差异:
-
LLVM 10使用较旧的trace-pc-guard插桩方式,会产生
sancov_guards相关符号。 -
LLVM 17使用更现代的PCGUARD插桩方式,内部实现更为复杂。
-
不同版本生成的插桩代码互不兼容,不应混用。
技术建议
对于需要在bitcode层面进行操作的用户,建议:
-
明确区分插桩阶段和链接阶段,避免重复插桩。
-
保持工具链版本一致性,特别是LLVM版本与AFL++版本的匹配。
-
对于复杂的bitcode处理流程,考虑使用
-fno-sanitize=all等选项临时禁用插桩。 -
在调试时,可以使用
nm等工具检查目标文件中的符号,帮助诊断问题。
总结
AFL++的插桩机制是其高效模糊测试的核心,理解其工作原理对于解决类似问题至关重要。通过正确区分插桩和链接阶段,并选择合适的工具链组合,可以避免这类bitcode转换问题,充分发挥AFL++的强大功能。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00