科学Python库开发指南与Cookiecutter模板使用手册
1. 项目目录结构及介绍
本项目scientific-python/cookie是一个基于科学Python开发者指南的Cookiecutter模版,旨在帮助开发者快速启动符合科学计算标准的新Python项目。以下是其核心目录结构概览:
.
├── devcontainer # 开发容器配置相关
├── docs # 文档资料存放处
│ ├── helpers # 辅助文档或脚本
│ └── ... # 更多文档子目录
├── src # 源代码目录,包含sp_repo_review等工具
│ └── sp_repo_review # 库代码及相关审查工具
├── tests # 测试目录
├── [.gitattributes] # 控制Git如何处理特定文件
├── [.gitignore] # 忽略特定文件的Git配置
├── [pre-commit-config.yaml] # 预提交钩子配置,确保代码质量
├── [cookiecutter.json] # Cookiecutter模板配置文件
├── [copier.yml] # 若使用Copier时的配置文件
├── [noxfile.py] # Nox自动化测试和环境管理文件
├── [pyproject.toml] # 包的元数据和依赖管理文件
└── [README.md] # 主要的项目说明文档
重要文件介绍:
- cookiecutter.json: 提供了项目生成时的选项列表,允许用户自定义项目细节。
- noxfile.py: 定义了一系列自动化任务,如测试、格式化检查等。
- pyproject.toml: 现代Python项目的配置文件,指定打包信息和依赖项。
2. 项目启动文件介绍
在生成的项目中,并没有一个单一的“启动文件”概念,因为这取决于所选择的包构建后端(如Hatch, Flit, Poetry等)。不过,每个构建后端通常有自己的入口点或配置文件来定义如何启动应用。例如,如果你选择了Poetry作为构建工具,pyproject.toml将是关键配置,而实际的应用启动通常由含有if __name__ == "__main__":块的主模块或通过entry_points在pyproject.toml中定义。
对于运行示例或服务,需查看具体项目中的__main__.py或根据应用框架(如FastAPI, Flask)的启动指南。
3. 项目的配置文件介绍
主要配置文件
-
pyproject.toml: 这是现代Python项目的核心配置文件,其中包含了项目元数据(如名称、版本)、依赖关系、以及可能的编译指令。它使项目遵循PEP 621标准。
-
setup.cfg/setup.py (如果使用setuptools): 老式的配置方式,用于不采用PEP 621标准的老项目。虽然新项目推荐使用
pyproject.toml,但在某些场景下,这些文件仍用于控制setuptools的行为。 -
cookiecutter.json: 这不是项目运行配置,但它是生成项目时的重要配置文件,决定了生成的项目结构和初始内容。
-
.gitignore: 控制哪些文件不应被纳入版本控制系统。
-
pre-commit-config.yaml: 自动化代码检查和格式化的配置,确保提交前代码的质量。
-
noxfile.py: 不直接属于配置文件,但定义了一系列自动化开发流程,间接影响项目管理和构建过程。
项目还可能包含其他配置,如特定于框架的配置文件(如Django的settings.py),或者特定部署的配置(如.env文件用于环境变量),但这些依赖于项目最终的选择和实现。在使用此模板创建项目后,开发者应根据应用需求细化这些配置。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C078
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00