tqdm:Python中的优雅进度监控工具
2024-08-10 02:47:05作者:卓艾滢Kingsley
项目介绍
tqdm,意为阿拉伯语的“进步”(تقدّم),同时也是西班牙语“我爱你太多”的缩写,是Python世界里一个极其便捷且可拓展的进度条库。它能够在任何长循环内轻松添加智能进度指示,仅需一行代码:将你的迭代器用 tqdm() 包裹起来。此库支持多种环境,包括标准命令行、Jupyter Notebook、IPython等,提供丰富的自定义选项来增强用户体验。
项目快速启动
要立即开始使用tqdm,首先确保其已安装在你的环境中。若未安装,可通过以下pip命令进行安装:
pip install tqdm
之后,在你的Python脚本中加入以下示例代码,体验快速启动:
from tqdm import tqdm
import time
for i in tqdm(range(100)):
# 模拟一些处理过程
time.sleep(0.1)
上述代码会显示出一个简单直观的进度条,随着循环的执行而更新。
应用案例和最佳实践
文件下载进度跟踪
如果你需要下载大文件并实时显示进度,tqdm结合requests库可以做到这一点:
import requests
from tqdm import tqdm
url = 'http://example.com/large_file.zip'
response = requests.get(url, stream=True)
file_size = int(response.headers['content-length'])
with open('large_file.zip', 'wb') as f, tqdm(
total=file_size,
unit='B',
unit_scale=True,
desc='File Download',
ascii=False, ncols=79
) as bar:
for data in response.iter_content(chunk_size=1024):
if data:
f.write(data)
bar.update(len(data))
Jupyter Notebook中的使用
在Jupyter环境里,使用tqdm.notebook.tqdm代替tqdm,以获得更好的视觉效果:
from tqdm.notebook import tqdm
import numpy as np
data_loader = iter(np.random.randn(100, 10000))
for batch in tqdm(data_loader):
pass # 处理你的数据批次
典型生态项目集成
tqdm不仅限于基本的迭代器使用,它通过贡献者提供的各种模块,能够与更多生态系统项目集成,比如concurrent.futures、keras、dask等。
例如,在Keras训练模型时,你可以利用tqdm来美化训练过程中的epoch进度:
from tensorflow.keras.callbacks import Callback
class TQDMCallback(Callback):
def on_epoch_begin(self, epoch, logs=None):
self.tqdm = tqdm(total=self.params['steps'])
def on_batch_end(self, batch, logs=None):
self.tqdm.update(1)
print(f'\rEpoch {epoch + 1}/{self.params["epochs"]}', end='')
def on_epoch_end(self, epoch, logs=None):
self.tqdm.close()
model.fit(x_train, y_train, epochs=10, callbacks=[TQDMCallback()])
以上展示了如何在不同场景下利用tqdm提升开发效率和用户体验。通过这些案例,可以看到tqdm是如何融入到日常编程任务中,成为不可或缺的工具之一。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
410
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
251