tqdm:Python中的优雅进度监控工具
2024-08-10 02:47:05作者:卓艾滢Kingsley
项目介绍
tqdm,意为阿拉伯语的“进步”(تقدّم),同时也是西班牙语“我爱你太多”的缩写,是Python世界里一个极其便捷且可拓展的进度条库。它能够在任何长循环内轻松添加智能进度指示,仅需一行代码:将你的迭代器用 tqdm() 包裹起来。此库支持多种环境,包括标准命令行、Jupyter Notebook、IPython等,提供丰富的自定义选项来增强用户体验。
项目快速启动
要立即开始使用tqdm,首先确保其已安装在你的环境中。若未安装,可通过以下pip命令进行安装:
pip install tqdm
之后,在你的Python脚本中加入以下示例代码,体验快速启动:
from tqdm import tqdm
import time
for i in tqdm(range(100)):
# 模拟一些处理过程
time.sleep(0.1)
上述代码会显示出一个简单直观的进度条,随着循环的执行而更新。
应用案例和最佳实践
文件下载进度跟踪
如果你需要下载大文件并实时显示进度,tqdm结合requests库可以做到这一点:
import requests
from tqdm import tqdm
url = 'http://example.com/large_file.zip'
response = requests.get(url, stream=True)
file_size = int(response.headers['content-length'])
with open('large_file.zip', 'wb') as f, tqdm(
total=file_size,
unit='B',
unit_scale=True,
desc='File Download',
ascii=False, ncols=79
) as bar:
for data in response.iter_content(chunk_size=1024):
if data:
f.write(data)
bar.update(len(data))
Jupyter Notebook中的使用
在Jupyter环境里,使用tqdm.notebook.tqdm代替tqdm,以获得更好的视觉效果:
from tqdm.notebook import tqdm
import numpy as np
data_loader = iter(np.random.randn(100, 10000))
for batch in tqdm(data_loader):
pass # 处理你的数据批次
典型生态项目集成
tqdm不仅限于基本的迭代器使用,它通过贡献者提供的各种模块,能够与更多生态系统项目集成,比如concurrent.futures、keras、dask等。
例如,在Keras训练模型时,你可以利用tqdm来美化训练过程中的epoch进度:
from tensorflow.keras.callbacks import Callback
class TQDMCallback(Callback):
def on_epoch_begin(self, epoch, logs=None):
self.tqdm = tqdm(total=self.params['steps'])
def on_batch_end(self, batch, logs=None):
self.tqdm.update(1)
print(f'\rEpoch {epoch + 1}/{self.params["epochs"]}', end='')
def on_epoch_end(self, epoch, logs=None):
self.tqdm.close()
model.fit(x_train, y_train, epochs=10, callbacks=[TQDMCallback()])
以上展示了如何在不同场景下利用tqdm提升开发效率和用户体验。通过这些案例,可以看到tqdm是如何融入到日常编程任务中,成为不可或缺的工具之一。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178