CenterNet-better:更高效、更优雅的目标检测框架
项目介绍
CenterNet-better 是一个基于 CenterNet 目标检测算法的高效实现,旨在提供一个更易理解、更优雅的代码库。该项目由资深开发者 Feng Wang 基于其自研的 dl_lib 库实现,部分代码参考了 Facebook 的 detectron2 框架。CenterNet-better 不仅在性能上超越了原始的 CenterNet 实现,而且在训练时间和推理速度上都有显著提升。
项目技术分析
技术架构
CenterNet-better 的核心技术架构基于 CenterNet 算法,该算法将目标检测问题转化为关键点检测问题,通过预测目标的中心点及其宽高来实现目标检测。项目在实现过程中,采用了以下关键技术:
- 配置即对象:将配置文件视为对象,便于调试和运行时检查配置值。
- 通用训练/测试脚本:提供默认的训练和测试脚本,用户只需调用
dl_train/test --num-gpus x即可开始训练或测试。 - 自动性能报告:训练结束后,系统会自动评估模型并生成性能报告的 Markdown 文件。
- 向量化操作:通过向量化操作提升代码的执行速度和效率。
性能表现
CenterNet-better 在性能上表现出色,相比原始的 CenterNet 实现,它在训练时间上减少了近一半,同时 mAP(平均精度均值)提升了 1~2 个百分点。具体性能数据如下:
| 骨干网络 | mAP | FPS | V100 FPS | 训练模型下载链接 |
|---|---|---|---|---|
| ResNet-18 | 29.8 | 92 | 113 | Google Drive |
| ResNet-50 | 34.9 | 57 | 71 | Google Drive |
| ResNet-101 | 36.8 | 43 | 50 | Google Drive |
项目及技术应用场景
CenterNet-better 适用于多种目标检测场景,特别是在需要高效、快速的目标检测任务中表现尤为突出。以下是一些典型的应用场景:
- 自动驾驶:在自动驾驶系统中,快速准确地检测道路上的行人、车辆等目标至关重要。
- 安防监控:在安防监控系统中,实时检测异常行为或目标,提高监控效率。
- 工业检测:在工业生产线上,快速检测产品缺陷或异常,提高生产效率。
- 医学影像分析:在医学影像分析中,快速检测病灶或异常区域,辅助医生诊断。
项目特点
1. 高效性能
CenterNet-better 在训练时间和推理速度上都有显著提升,相比原始实现,训练时间减少了一半,mAP 提升了 1~2 个百分点。
2. 优雅实现
项目代码结构清晰,采用了配置即对象的设计理念,便于调试和维护。同时,通用训练/测试脚本的引入,使得用户可以更方便地进行训练和测试。
3. 自动性能报告
训练结束后,系统会自动生成性能报告的 Markdown 文件,用户可以直观地查看模型的性能表现。
4. 未来扩展
项目计划支持更多的骨干网络(如 DLA 和 Hourglass)以及关键点数据集,未来还将继续优化和扩展功能,进一步提升项目的实用性和性能。
结语
CenterNet-better 是一个高效、优雅的目标检测框架,适用于多种实际应用场景。无论你是研究者还是开发者,CenterNet-better 都能为你提供强大的支持。赶快尝试一下吧!
@misc{wang2020centernet_better,
author = {Feng Wang},
title = {CenterNet-better},
howpublished = {\url{https://github.com/FateScript/CenterNet-better}},
year = {2020}
}
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0113
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00