Guidance项目中的HTML标签污染问题解析与解决方案
2025-05-10 22:15:14作者:裴锟轩Denise
问题背景
在使用Guidance项目与大型语言模型(如Llama-3 8B/70B和Mixtral)交互时,开发者发现gen函数生成的输出被不必要的HTML标签包裹,导致难以直接提取所需内容。这些HTML标签不仅污染了输出格式,还增加了后续数据处理的复杂度。
问题现象
当使用gen函数生成文本时,模型会在输出中插入类似以下结构的HTML标签:
<||_html:<span style='background-color: rgba(0.0, 165.0, 0, 0.15); border-radius: 3px;' title='1.0'>_||>
这些标签将每个字符或单词单独包裹,使得原本简洁的JSON格式输出变得难以解析。
技术分析
经过深入分析,这个问题并非Guidance框架本身的缺陷,而是与模型输出处理和结果提取方式有关。关键点在于:
-
输出显示与存储分离:当设置
echo=True时,控制台显示的是原始输出流,包含模型生成的所有中间格式和标记。 -
结构化数据提取:Guidance实际上在内部已经正确解析了生成内容,但需要通过特定API访问而非直接打印整个输出对象。
解决方案
方法一:禁用回显模式
在初始化模型时设置echo=False可以避免控制台显示被污染的原始输出:
llm = models.Transformers(
model_id,
echo=False, # 关键修改
cache_dir="/data2/.shared_models/",
device_map='auto'
)
方法二:使用正确的结果提取方式
更推荐的方法是使用Guidance提供的API直接获取生成内容:
- 按名称提取生成结果:
substance_use = llm["Substance"] # 提取select结果
explanation = llm["Substance Use Explanation"] # 提取gen结果
- 使用capture函数捕获大段文本:
对于包含多个生成操作和普通文本的复杂输出,可以使用
capture函数:
from guidance import capture
@guidance
def complex_generation(lm):
with capture("full_output"):
lm += "前缀文本"
lm += gen("part1")
lm += "中间文本"
lm += gen("part2")
return lm
result = llm + complex_generation()
full_output = result["full_output"] # 获取完整捕获内容
最佳实践建议
-
避免依赖原始输出:始终使用Guidance提供的API方法提取生成内容,而非直接解析原始输出字符串。
-
合理命名生成操作:为每个
gen和select操作赋予有意义的名称,便于后续提取。 -
分层处理复杂输出:对于嵌套或多层次的生成内容,采用分层捕获和提取策略。
-
输出验证:在提取关键数据后,添加验证逻辑确保数据完整性。
总结
Guidance框架通过提供结构化的结果提取API,有效解决了模型原始输出中的格式污染问题。开发者应当熟悉框架提供的数据访问模式,而非依赖传统的字符串解析方法。这种设计既保持了与模型交互的灵活性,又确保了结果提取的可靠性,是大型语言模型应用开发中的一种优雅解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C083
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
82
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1