Guidance项目中使用gen函数生成HTML标签问题的分析与解决
2025-05-10 12:28:39作者:牧宁李
在Guidance项目(一个用于构建和控制大型语言模型输出的Python库)的实际应用中,开发者可能会遇到一个特殊问题:当使用gen函数生成文本时,模型会不必要地添加HTML标签,导致输出结果难以直接提取和使用。本文将深入分析这一现象的原因,并提供有效的解决方案。
问题现象分析
当使用Guidance库的gen函数配合Llama-3 8B/70B或Mixtral等模型时,生成的输出会被自动包裹在类似<||_html:<span style='background-color: rgba(0.0, 165.0, 0, 0.15); border-radius: 3px;' title='1.0'>_||>的HTML标签中。这些标签虽然不影响内容的完整性,但会显著增加后续处理的复杂度。
这种现象在以下场景尤为明显:
- 生成JSON格式的输出时
- 使用
select函数进行选项选择时 - 需要直接提取生成文本进行后续处理时
问题本质
经过深入分析,这种现象并非Guidance库本身的bug,而是IPython环境对输出的"美化"处理。当在交互式环境中设置echo=True时,系统会自动添加这些格式化标签以提高可读性。
解决方案
方案一:关闭echo模式
最直接的解决方法是初始化模型时设置echo=False:
llm = models.Transformers(
model_id,
echo=False, # 关键修改
cache_dir="/data2/.shared_models/",
device_map='auto'
)
方案二:使用键值提取
即使保留了HTML标签,Guidance库仍提供了可靠的内容提取机制。通过__getitem__方法,可以直接获取命名生成的内容:
# 定义生成内容时命名
"Substance Use Explanation": "{gen('Substance Use Explanation', stop='"')}"
# 后续提取
substance_explanation = llm["Substance Use Explanation"]
方案三:使用capture函数
对于需要捕获长文本或多段生成内容的情况,可以使用capture函数进行封装:
from guidance import capture
@guidance
def my_function(lm):
with capture("my_output"):
lm += "Some text"
lm += gen("part1")
lm += "More text"
lm += gen("part2")
return lm
# 提取完整内容
full_output = llm["my_output"]
最佳实践建议
- 开发阶段:保持
echo=True以便调试,利用键值提取法获取干净内容 - 生产环境:设置
echo=False减少不必要的处理开销 - 复杂输出:优先使用
capture函数组织内容结构 - 内容提取:始终通过命名键值而非直接字符串处理获取生成内容
总结
Guidance库的这一特性实际上是为了提升交互体验而设计的,理解其工作机制后,开发者可以灵活选择最适合自己应用场景的处理方式。通过合理的配置和提取方法,既能保持开发时的便利性,又能确保生产环境中的高效处理。
对于需要精确控制模型输出的场景,建议开发者熟悉Guidance提供的各种内容捕获和提取机制,这将大大提升开发效率和代码的可维护性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
Ascend Extension for PyTorch
Python
235
267
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
56
33
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669