Guidance项目中使用gen函数生成HTML标签问题的分析与解决
2025-05-10 16:51:51作者:牧宁李
在Guidance项目(一个用于构建和控制大型语言模型输出的Python库)的实际应用中,开发者可能会遇到一个特殊问题:当使用gen函数生成文本时,模型会不必要地添加HTML标签,导致输出结果难以直接提取和使用。本文将深入分析这一现象的原因,并提供有效的解决方案。
问题现象分析
当使用Guidance库的gen函数配合Llama-3 8B/70B或Mixtral等模型时,生成的输出会被自动包裹在类似<||_html:<span style='background-color: rgba(0.0, 165.0, 0, 0.15); border-radius: 3px;' title='1.0'>_||>的HTML标签中。这些标签虽然不影响内容的完整性,但会显著增加后续处理的复杂度。
这种现象在以下场景尤为明显:
- 生成JSON格式的输出时
- 使用
select函数进行选项选择时 - 需要直接提取生成文本进行后续处理时
问题本质
经过深入分析,这种现象并非Guidance库本身的bug,而是IPython环境对输出的"美化"处理。当在交互式环境中设置echo=True时,系统会自动添加这些格式化标签以提高可读性。
解决方案
方案一:关闭echo模式
最直接的解决方法是初始化模型时设置echo=False:
llm = models.Transformers(
model_id,
echo=False, # 关键修改
cache_dir="/data2/.shared_models/",
device_map='auto'
)
方案二:使用键值提取
即使保留了HTML标签,Guidance库仍提供了可靠的内容提取机制。通过__getitem__方法,可以直接获取命名生成的内容:
# 定义生成内容时命名
"Substance Use Explanation": "{gen('Substance Use Explanation', stop='"')}"
# 后续提取
substance_explanation = llm["Substance Use Explanation"]
方案三:使用capture函数
对于需要捕获长文本或多段生成内容的情况,可以使用capture函数进行封装:
from guidance import capture
@guidance
def my_function(lm):
with capture("my_output"):
lm += "Some text"
lm += gen("part1")
lm += "More text"
lm += gen("part2")
return lm
# 提取完整内容
full_output = llm["my_output"]
最佳实践建议
- 开发阶段:保持
echo=True以便调试,利用键值提取法获取干净内容 - 生产环境:设置
echo=False减少不必要的处理开销 - 复杂输出:优先使用
capture函数组织内容结构 - 内容提取:始终通过命名键值而非直接字符串处理获取生成内容
总结
Guidance库的这一特性实际上是为了提升交互体验而设计的,理解其工作机制后,开发者可以灵活选择最适合自己应用场景的处理方式。通过合理的配置和提取方法,既能保持开发时的便利性,又能确保生产环境中的高效处理。
对于需要精确控制模型输出的场景,建议开发者熟悉Guidance提供的各种内容捕获和提取机制,这将大大提升开发效率和代码的可维护性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350