OpenAPI-TS 项目中 TanStack Query 生成器命名优化方案
2025-07-01 02:51:07作者:史锋燃Gardner
背景介绍
在 OpenAPI-TS 项目中,当开发者使用 TanStack Query 插件生成 API 客户端代码时,会遇到一个常见的命名规范问题:对于 POST 请求的搜索端点,默认会生成一个 mutation 操作,而实际上这类端点更适合作为查询(query)操作使用。
问题本质
在 RESTful API 设计中,虽然 POST 请求通常用于创建资源(mutation),但有时也会用于复杂查询场景,特别是当查询参数过于复杂无法通过 URL 参数传递时。这种情况下,开发者更希望将这些 POST 端点作为查询(query)而非变更(mutation)来处理。
现有解决方案
当前 OpenAPI-TS 的 TanStack Query 插件已经提供了解决方案:
- 对于所有端点都会生成一个
xxxOptions函数 - 这个函数返回的选项可以直接用于
useQuery或useMutation钩子 - 开发者可以自由选择将 POST 端点用作查询还是变更
例如:
const query = useQuery({
...postLoansOptions({
body: {
query: {
op: 'eq',
args: { property: 'zipCode', value: '90815' },
},
},
}),
});
改进方向
虽然现有方案功能完整,但从开发者体验角度仍有优化空间:
-
命名一致性:目前生成的函数统一使用
Options后缀,而开发者可能期望更明确的Query或Mutation后缀 -
可配置性:可以增加配置选项,允许开发者:
- 自定义生成函数的命名模式
- 为特定端点强制指定生成查询或变更操作
- 基于 OpenAPI 文档中的 operationId 或路径模式进行规则匹配
-
文档增强:更突出地展示如何将 POST 端点用作查询的最佳实践
技术实现建议
要实现更灵活的命名配置,可以考虑以下方案:
// 配置示例
{
namingConvention: {
query: {
pattern: '{operationId}Query', // 或 '{pathName}Query'
overrides: [
{
path: '/search',
method: 'post',
type: 'query' // 强制作为查询
}
]
},
mutation: {
pattern: '{operationId}Mutation'
}
}
}
最佳实践
对于搜索类 POST 端点,推荐以下处理方式:
-
语义明确:在 OpenAPI 文档中为搜索类 POST 端点添加明确的
operationId,如searchUsers -
类型安全:利用生成的类型定义确保查询参数和返回值的类型安全
-
性能优化:对于高频搜索,考虑结合 TanStack Query 的缓存策略优化性能
总结
OpenAPI-TS 项目为 TanStack Query 集成提供了坚实的基础设施,通过合理的配置和命名优化,可以进一步提升开发者体验。未来可以考虑增加更灵活的命名配置选项,同时保持现有功能的向后兼容性。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.25 K
暂无简介
Dart
619
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
261
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
790
76