ByConity项目优化器对分区键子查询过滤的性能优化分析
2025-07-03 14:10:35作者:庞眉杨Will
背景介绍
在分布式数据库系统ByConity中,当查询条件中的分区键过滤条件来自于子查询时,查询性能可能会显著下降。本文通过一个典型场景分析这一问题,并探讨优化方案。
问题现象
我们创建一个测试表test1,按日期字段pt_d进行分区,并插入大量测试数据。当执行以下两种查询时,性能差异明显:
- 分区键直接指定具体值(0.02秒完成)
select name from (
select name, sum(1) as id_users, sum(key) as all_id_users
from db.test1
where pt_d = '2020-04-09'
group by name
order by id_users desc
) t where t.all_id_users>300
- 分区键通过子查询获取(0.3秒完成)
select name from (
select name, sum(1) as id_users, sum(key) as all_id_users
from db.test1
where pt_d = (select max(pt_d) from db.test1)
group by name
order by id_users desc
) t where t.all_id_users>300
性能差异原因分析
当启用优化器(enable_optimizer=1)时,第二种查询会使用Join操作来处理子查询条件,而不是先执行子查询获取分区键值再进行分区裁剪。这种执行计划导致需要扫描更多数据,性能较差。
相比之下,禁用优化器(enable_optimizer=0)时,查询耗时降至0.08秒,因为传统执行引擎会先执行子查询获取具体分区键值。
优化方案
ByConity提供了两种参数来优化这类场景:
early_execute_scalar_subquery:强制先执行标量子查询early_execute_in_subquery:强制先执行IN子查询
设置early_execute_scalar_subquery=true后,优化器会先执行select max(pt_d) from db.test1获取具体分区键值,然后进行分区裁剪,显著提升性能。
实现原理
这种优化属于"子查询提前执行"技术,核心思想是:
- 识别出可以独立执行的子查询
- 在执行主查询前先执行这些子查询
- 将子查询结果作为常量用于主查询优化
- 特别是对于分区键条件,可以提前确定需要扫描的分区范围
最佳实践建议
对于包含分区键子查询过滤的SQL,建议:
- 优先使用
early_execute_scalar_subquery参数 - 对于复杂子查询,考虑重写为JOIN或临时表
- 定期收集表统计信息(create stats)以帮助优化器决策
- 监控查询计划,确保分区裁剪有效
总结
ByConity优化器在处理分区键子查询过滤时,默认行为可能导致性能问题。通过合理使用子查询提前执行参数,可以显著提升这类查询的性能。理解优化器的工作原理和可用参数,有助于开发人员编写更高效的SQL查询。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
402
3.12 K
Ascend Extension for PyTorch
Python
224
249
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
315
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219