ByConity项目优化器对分区键子查询过滤的性能优化分析
2025-07-03 08:45:16作者:庞眉杨Will
背景介绍
在分布式数据库系统ByConity中,当查询条件中的分区键过滤条件来自于子查询时,查询性能可能会显著下降。本文通过一个典型场景分析这一问题,并探讨优化方案。
问题现象
我们创建一个测试表test1,按日期字段pt_d进行分区,并插入大量测试数据。当执行以下两种查询时,性能差异明显:
- 分区键直接指定具体值(0.02秒完成)
select name from (
select name, sum(1) as id_users, sum(key) as all_id_users
from db.test1
where pt_d = '2020-04-09'
group by name
order by id_users desc
) t where t.all_id_users>300
- 分区键通过子查询获取(0.3秒完成)
select name from (
select name, sum(1) as id_users, sum(key) as all_id_users
from db.test1
where pt_d = (select max(pt_d) from db.test1)
group by name
order by id_users desc
) t where t.all_id_users>300
性能差异原因分析
当启用优化器(enable_optimizer=1)时,第二种查询会使用Join操作来处理子查询条件,而不是先执行子查询获取分区键值再进行分区裁剪。这种执行计划导致需要扫描更多数据,性能较差。
相比之下,禁用优化器(enable_optimizer=0)时,查询耗时降至0.08秒,因为传统执行引擎会先执行子查询获取具体分区键值。
优化方案
ByConity提供了两种参数来优化这类场景:
early_execute_scalar_subquery:强制先执行标量子查询early_execute_in_subquery:强制先执行IN子查询
设置early_execute_scalar_subquery=true后,优化器会先执行select max(pt_d) from db.test1获取具体分区键值,然后进行分区裁剪,显著提升性能。
实现原理
这种优化属于"子查询提前执行"技术,核心思想是:
- 识别出可以独立执行的子查询
- 在执行主查询前先执行这些子查询
- 将子查询结果作为常量用于主查询优化
- 特别是对于分区键条件,可以提前确定需要扫描的分区范围
最佳实践建议
对于包含分区键子查询过滤的SQL,建议:
- 优先使用
early_execute_scalar_subquery参数 - 对于复杂子查询,考虑重写为JOIN或临时表
- 定期收集表统计信息(create stats)以帮助优化器决策
- 监控查询计划,确保分区裁剪有效
总结
ByConity优化器在处理分区键子查询过滤时,默认行为可能导致性能问题。通过合理使用子查询提前执行参数,可以显著提升这类查询的性能。理解优化器的工作原理和可用参数,有助于开发人员编写更高效的SQL查询。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.77 K
Ascend Extension for PyTorch
Python
347
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
607
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
184
暂无简介
Dart
778
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896