StyleGestures 开源项目最佳实践教程
2025-05-20 02:38:50作者:邓越浪Henry
1. 项目介绍
StyleGestures 是一个开源项目,它包含了用于生成运动合成的代码,具体实现了两篇论文中的方法:"MoGlow: Probabilistic and controllable motion synthesis using normalising flows" 和 "Style-controllable speech-driven gesture synthesis using normalising flows"。这个项目基于 Glow 实现的正常化流技术,可以合成具有概率性和可控性的运动。
2. 项目快速启动
环境准备
首先,需要准备一个符合项目要求的环境。项目使用 Conda 管理依赖,你需要创建一个新的 Conda 环境并安装所需的依赖。
conda create --name moglow python=3.7
conda activate moglow
conda install -c conda-forge pytorch torchvision torchaudio
数据准备
项目需要特定数据集来训练模型。对于运动合成,可以使用 Edinburgh Locomotion MOCAP Database、CMU Motion Capture Database 和 HDM05 数据集。对于手势合成,需要使用 Trinity Speech-Gesture Dataset。你需要按照项目的指引获取并处理这些数据。
# 将数据下载到对应的目录
cd data/locomotion
# 对数据集进行处理
python prepare_locomotion_datasets.py
模型训练
编辑 hparams/xxx.json 文件来设置网络和训练参数。以下是一个训练运动模型的例子:
python train_moglow.py 'hparams/preferred/locomotion.json' locomotion
对于不同类型的数据或模型,你需要选择相应的参数文件和数据标识。
模型测试
训练过程中会定期生成输出样本。要从预训练模型中采样,需要在 hparams/xxx.json 文件中指定模型路径,并再次运行训练脚本。
python train_moglow.py 'hparams/preferred/locomotion.json' locomotion
3. 应用案例和最佳实践
案例分析
- 运动合成:使用 MoGlow 模型可以合成各种运动,这些运动可以用于动画制作、游戏开发或虚拟现实等领域。
- 手势合成:StyleGestures 模型可以根据语音控制生成相应的手势,适用于虚拟助手或增强现实应用。
实践建议
- 数据预处理:确保使用高质量、经过适当预处理的数据集,这对于模型性能至关重要。
- 参数调优:在训练前仔细调整模型参数,以获得最佳性能。
- 模型评估:使用标准评估指标来监控训练过程,确保模型在验证集上的表现。
4. 典型生态项目
StyleGestures 可以与以下类型的开源项目结合使用,以创建更加丰富和完整的应用生态系统:
- 机器学习框架:如 TensorFlow、PyTorch,它们提供了强大的工具来训练和部署模型。
- 3D 渲染引擎:如 Unity 或 Unreal Engine,可以用于将合成的运动或手势集成到 3D 应用中。
- 自然语言处理工具:如 spaCy 或 NLTK,用于处理和解析语音数据,以驱动 StyleGestures 模型生成对应的手势。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 Jetson TX2开发板官方资源完全指南:从入门到精通 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.71 K
仓颉编译器源码及 cjdb 调试工具。
C++
123
773
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
598
132
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
616
Ascend Extension for PyTorch
Python
141
170
仓颉编程语言命令行工具,包括仓颉包管理工具、仓颉格式化工具、仓颉多语言桥接工具及仓颉语言服务。
C++
55
751
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
634
232