StyleGestures 开源项目最佳实践教程
2025-05-20 08:23:42作者:邓越浪Henry
1. 项目介绍
StyleGestures 是一个开源项目,它包含了用于生成运动合成的代码,具体实现了两篇论文中的方法:"MoGlow: Probabilistic and controllable motion synthesis using normalising flows" 和 "Style-controllable speech-driven gesture synthesis using normalising flows"。这个项目基于 Glow 实现的正常化流技术,可以合成具有概率性和可控性的运动。
2. 项目快速启动
环境准备
首先,需要准备一个符合项目要求的环境。项目使用 Conda 管理依赖,你需要创建一个新的 Conda 环境并安装所需的依赖。
conda create --name moglow python=3.7
conda activate moglow
conda install -c conda-forge pytorch torchvision torchaudio
数据准备
项目需要特定数据集来训练模型。对于运动合成,可以使用 Edinburgh Locomotion MOCAP Database、CMU Motion Capture Database 和 HDM05 数据集。对于手势合成,需要使用 Trinity Speech-Gesture Dataset。你需要按照项目的指引获取并处理这些数据。
# 将数据下载到对应的目录
cd data/locomotion
# 对数据集进行处理
python prepare_locomotion_datasets.py
模型训练
编辑 hparams/xxx.json
文件来设置网络和训练参数。以下是一个训练运动模型的例子:
python train_moglow.py 'hparams/preferred/locomotion.json' locomotion
对于不同类型的数据或模型,你需要选择相应的参数文件和数据标识。
模型测试
训练过程中会定期生成输出样本。要从预训练模型中采样,需要在 hparams/xxx.json
文件中指定模型路径,并再次运行训练脚本。
python train_moglow.py 'hparams/preferred/locomotion.json' locomotion
3. 应用案例和最佳实践
案例分析
- 运动合成:使用 MoGlow 模型可以合成各种运动,这些运动可以用于动画制作、游戏开发或虚拟现实等领域。
- 手势合成:StyleGestures 模型可以根据语音控制生成相应的手势,适用于虚拟助手或增强现实应用。
实践建议
- 数据预处理:确保使用高质量、经过适当预处理的数据集,这对于模型性能至关重要。
- 参数调优:在训练前仔细调整模型参数,以获得最佳性能。
- 模型评估:使用标准评估指标来监控训练过程,确保模型在验证集上的表现。
4. 典型生态项目
StyleGestures 可以与以下类型的开源项目结合使用,以创建更加丰富和完整的应用生态系统:
- 机器学习框架:如 TensorFlow、PyTorch,它们提供了强大的工具来训练和部署模型。
- 3D 渲染引擎:如 Unity 或 Unreal Engine,可以用于将合成的运动或手势集成到 3D 应用中。
- 自然语言处理工具:如 spaCy 或 NLTK,用于处理和解析语音数据,以驱动 StyleGestures 模型生成对应的手势。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0286Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp英语课程中动词时态一致性问题的分析与修正2 freeCodeCamp课程中关于单选框样式定制的技术解析3 freeCodeCamp全栈开发课程中JavaScript对象相关讲座的重构建议4 freeCodeCamp课程中HTML表格元素格式规范问题解析5 freeCodeCamp React与Redux教程中Provider组件验证缺失问题分析6 freeCodeCamp全栈开发课程中收藏图标切换器的优化建议7 freeCodeCamp 前端开发实验室:优化调查表单测试断言的最佳实践8 freeCodeCamp贷款资格检查器中的参数验证问题分析9 freeCodeCamp课程中卡片设计最佳实践的用户中心化思考10 freeCodeCamp论坛搜索与帖子标题不一致问题的技术分析
最新内容推荐
PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
162
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15

React Native鸿蒙化仓库
C++
198
279

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16

Git4Research旨在构建一个开放、包容、协作的研究社区,让更多人能够参与到科学研究中,共同推动知识的进步。
HTML
22
1

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
950
557

基于QEMU构建的RISC-V64 SOC,支持Linux,baremetal, RTOS等,适合用来学习Linux,后续还会添加大量的controller,实现无需实体开发板,即可学习Linux和RISC-V架构
C
19
5