StyleGestures 的安装和配置教程
2025-05-20 20:33:23作者:戚魁泉Nursing
项目基础介绍
StyleGestures 是一个开源项目,它包含了用于生成和合成动作的代码,这些动作可以通过归一化流进行概率性和可控性的合成。项目基于两项研究:MoGlow 和 Style Gestures。这些研究成果可以应用于动作合成、动画制作以及增强现实等领域。该项目的主要编程语言是 Python。
项目使用的关键技术和框架
项目主要使用了以下技术和框架:
- 归一化流(Normalising Flows):这是一种深度学习模型,能够学习数据的高斯分布,用于生成高质量的合成数据。
- Glow 模型:一个基于归一化流的生成模型,本项目中有部分代码基于 GitHub 用户 chaiyujin 的 Glow 实现。
- PyTorch:一个流行的深度学习框架,用于构建和训练神经网络。
项目安装和配置的准备工作
在安装 StyleGestures 项目之前,请确保您的计算机满足以下要求:
- Python 3.x(建议使用 Python 3.6 或更高版本)
- conda 或其他 Python 环境管理工具
- Git(用于克隆项目仓库)
安装步骤
-
克隆项目仓库 使用 Git 命令克隆项目仓库到本地计算机:
git clone https://github.com/simonalexanderson/StyleGestures.git -
设置虚拟环境(推荐) 进入项目目录,并使用 conda 创建一个虚拟环境(如果您使用的是 conda):
cd StyleGestures conda create -n moglow python=3.8 conda activate moglow -
安装依赖 在虚拟环境中,使用 conda 安装项目所需的依赖项:
conda install -c conda-forge pytorch torchvision torchaudio cudatoolkit=xx.x其中
cudatoolkit的版本应根据您安装的 CUDA 版本来替换。 -
安装项目依赖 在项目目录中,使用 pip 安装项目所需的其他依赖:
pip install -r requirements.txt -
准备数据集 根据项目 README 文档中的说明,下载并准备所需的数据集。由于数据集的版权问题,您需要自行获取数据集并放置在相应的目录下。
-
开始训练 根据项目文档中的说明,编辑
hparams/xxx.json文件以设置训练参数。然后,运行以下命令开始训练:python train_moglow.py <hparams> <dataset>请将
<hparams>和<dataset>替换为适当的参数。
按照以上步骤,您应该能够成功安装和配置 StyleGestures 项目,并开始训练模型。请确保在操作过程中仔细阅读项目文档,以获取更多详细的指导和信息。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.81 K
React Native鸿蒙化仓库
JavaScript
259
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
654
仓颉编程语言运行时与标准库。
Cangjie
141
878