DeepLabCut训练中断后如何正确恢复训练
2025-06-09 04:09:13作者:尤峻淳Whitney
问题背景
在使用DeepLabCut进行多动物姿态估计模型训练时,许多用户会遇到训练中断后无法正确恢复的问题。典型表现为:当训练意外中断后,再次启动训练时系统会从初始迭代(如100次)重新开始,而不是从上次保存的检查点(如55,000次)继续训练。
问题原因分析
这个问题的根本原因在于训练配置文件中init_weights
参数的设置。DeepLabCut默认会从预训练权重(如ImageNet)开始训练,而不是自动检测并加载最新的检查点文件。当训练中断后,如果没有手动修改这个参数,系统就会按照默认配置重新开始训练。
解决方案
要正确恢复训练,需要按照以下步骤操作:
-
定位配置文件:在项目目录中找到对应训练集的
pose_cfg.yaml
文件,路径通常为dlc-models/iteration-X/[项目名称]-trainsetYshuffleZ
。 -
修改init_weights参数:
- 打开
pose_cfg.yaml
文件 - 找到
init_weights
配置项 - 将其值修改为最新检查点文件的路径(如
snapshot-55000
)
- 打开
-
路径获取技巧:
- 在Google Colab中可以通过文件浏览器找到检查点文件
- 右键点击文件选择"复制路径"获取完整路径
- 注意只需使用基础文件名(如
snapshot-55000
),不需要带扩展名
最佳实践建议
-
定期备份配置:在修改
pose_cfg.yaml
前建议备份原文件。 -
检查点管理:
- 合理设置
save_iters
参数控制检查点保存频率 - 定期清理旧的检查点以节省存储空间
- 合理设置
-
训练监控:
- 使用TensorBoard监控训练过程
- 记录关键指标变化,便于发现问题
-
中断处理流程:
- 训练中断后首先检查最新的检查点文件
- 确认文件完整性后再修改配置恢复训练
技术原理
DeepLabCut基于TensorFlow框架,其训练恢复机制依赖于检查点文件。这些文件不仅包含模型权重,还包括优化器状态等训练元数据。正确指定检查点路径可以确保训练过程无缝衔接,保持学习率调度等关键训练参数的连续性。
通过理解这一机制,用户可以更灵活地管理训练过程,包括在不同阶段调整学习策略或进行模型微调。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
507

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
255
299

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5