DeepLabCut训练中断后如何正确恢复训练
问题背景
在使用DeepLabCut进行多动物姿态估计模型训练时,许多用户会遇到一个常见问题:当训练过程中断后,尝试恢复训练时系统不是从上次保存的检查点继续,而是重新从初始迭代开始训练。这不仅浪费了之前训练的计算资源,也大大延长了整体训练时间。
问题原因分析
通过分析用户报告和系统日志,我们发现这个问题主要源于配置文件中的权重初始化设置。DeepLabCut默认会从预训练的ImageNet权重开始训练,即使用resnet_v1_50.ckpt
作为初始权重。当训练中断后,如果用户没有明确指定要从哪个检查点恢复,系统会按照默认配置重新开始。
解决方案
要正确恢复训练,需要修改项目目录中的pose_cfg.yaml
配置文件。具体步骤如下:
-
定位到项目目录下的模型训练文件夹,路径通常为:
/项目路径/dlc-models/iteration-0/训练集名称-trainsetXXshuffleX/
-
找到并打开
pose_cfg.yaml
文件 -
修改
init_weights
参数,将其指向你想要恢复的检查点文件,例如:init_weights: /完整路径/snapshot-55000
注意只需要指定到
snapshot-XXX
,不需要包含文件扩展名。 -
保存文件后重新启动训练
技术细节
DeepLabCut使用TensorFlow的检查点机制来保存训练状态。每个检查点包含:
- 模型权重
- 优化器状态
- 当前迭代次数等信息
当指定init_weights
参数时,系统会加载该检查点的所有信息,包括训练进度,从而实现真正的训练恢复,而不仅仅是权重初始化。
最佳实践建议
-
定期保存检查点:合理设置
save_iters
参数,确保训练过程中有足够的恢复点。 -
版本控制:对重要的检查点进行备份或重命名,避免意外覆盖。
-
训练监控:使用TensorBoard等工具监控训练过程,及时发现并解决问题。
-
资源管理:在云端环境训练时,注意计算资源的分配和使用时间,避免因资源不足导致的中断。
常见问题解答
Q:为什么修改后还是从零开始训练? A:请检查路径是否正确,确保有读写权限,并确认检查点文件完整存在。
Q:可以恢复到任意迭代点吗?
A:理论上可以恢复到任何保存过的检查点,但建议选择save_iters
设置的保存点。
Q:恢复训练后学习率会怎样变化? A:学习率会按照检查点保存时的状态继续,包括任何学习率调度设置。
通过正确配置检查点恢复机制,用户可以充分利用已有训练成果,显著提高深度学习模型的训练效率。这对于需要长时间训练的大型项目尤为重要。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0368Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









