TensorFlow Lite Micro项目中Flatbuffers头文件问题的解决方案
2025-07-03 13:17:51作者:段琳惟
问题背景
在TensorFlow Lite Micro(TFLM)项目的开发过程中,开发者经常会遇到编译错误,提示找不到flatbuffers/flatbuffers.h
头文件。这个问题尤其常见于尝试在Zephyr等嵌入式系统中部署TFLM模型时。
问题根源分析
这个问题的根源在于TFLite和TFLM虽然共享部分代码,但它们是两个不同的项目,有着不同的构建系统:
-
构建系统差异:
- TFLite支持CMake构建
- TFLM仅支持Bazel和GNU Make构建
-
Flatbuffers处理方式:
- TFLM的构建系统会自动下载Flatbuffers库到预期位置
- 手动复制Flatbuffers文件会导致路径问题,因为内部文件间的相互引用会失效
-
特殊修改:
- TFLM对Flatbuffers应用了特殊补丁,移除了可能的内存动态分配,这对嵌入式环境至关重要
解决方案
推荐方法:使用官方工具
TFLM项目提供了一个名为create_tflm_tree.py
的Python脚本,这是生成完整TFLM源代码树的最佳方式:
- 该脚本会根据指定配置生成完整的TFLM源代码结构
- 自动处理所有依赖关系,包括Flatbuffers
- 确保所有文件路径正确配置
构建系统选择建议
对于嵌入式开发,建议:
-
优先使用Bazel:
- 这是TensorFlow生态系统的标准构建工具
- 自动处理依赖关系
- 确保构建环境一致性
-
GNU Make备选:
- 对于资源受限的环境
- 需要手动配置更多参数
注意事项
- 不要手动复制Flatbuffers文件
- 不要修改Flatbuffers头文件中的include路径
- 嵌入式环境下必须使用TFLM提供的补丁版Flatbuffers
实施步骤
- 安装Bazel构建工具
- 获取TFLM源代码
- 使用Bazel构建目标平台版本
- 或者使用
create_tflm_tree.py
生成项目结构 - 将生成的代码集成到嵌入式项目中
总结
在TensorFlow Lite Micro项目中处理Flatbuffers依赖时,必须遵循项目特定的构建流程。手动处理文件会导致各种路径问题和功能缺失。使用官方提供的构建工具和脚本是确保项目正确编译和运行的关键。对于嵌入式开发者来说,理解TFLM的特殊构建需求和对Flatbuffers的修改是成功部署模型的重要前提。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0307- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
867
513

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
265
305

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
598
57

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3