Diffusers项目新增Optimum Quanto量化配置支持
2025-05-06 02:51:31作者:袁立春Spencer
Diffusers项目近期在其模型加载功能中新增了对Optimum Quanto量化工具的支持,这是继BitsAndBytes和TorchAO之后又一个可选的量化配置方案。这一改进使得用户能够在模型加载阶段直接应用量化,而不必在加载完成后手动执行量化操作。
量化配置的背景与意义
在深度学习模型部署过程中,量化技术能够显著减少模型大小并提高推理速度,同时保持可接受的精度损失。Diffusers作为流行的扩散模型库,一直在完善其量化支持体系。
此前,Diffusers已经支持两种量化配置方式:
- BitsAndBytesConfig:提供8位和4位量化选项
- TorchAoConfig:基于PyTorch的量化方案
而Optimum Quanto作为HuggingFace自家的量化工具,此前只能用于加载后量化(post-load quantization),无法像前两者那样在模型加载时自动应用量化。
技术实现细节
新的实现允许用户在调用from_pretrained方法时,通过quantization_config参数直接指定Optimum Quanto的量化配置。典型用法如下:
from diffusers import SD3Transformer2DModel
from optimum.quanto import QuantoConfig
quantization_config = QuantoConfig(...)
transformer = SD3Transformer2DModel.from_pretrained(
repo_id,
subfolder="transformer",
quantization_config=quantization_config
)
这种实现方式与其他量化方案保持了一致的API设计,使得用户可以在不同量化工具间无缝切换,大大提升了使用便利性。
对开发者的影响
这一改进为Diffusers用户带来了几个重要优势:
- 统一的量化接口:所有支持的量化工具都采用相同的配置方式,降低了学习成本
- 加载时量化:避免了额外的量化步骤,简化了工作流程
- 性能优化:在模型加载阶段就应用量化,可能带来更好的内存管理和推理性能
对于需要部署轻量级扩散模型的应用场景,这一功能提供了更多选择,开发者可以根据具体需求选择最适合的量化方案。
未来展望
随着量化技术的不断发展,Diffusers项目很可能会继续扩展其支持的量化后端。开发者可以关注以下几个方面的发展:
- 更多量化位宽的支持
- 混合精度量化策略
- 针对特定硬件优化的量化方案
- 自动化的量化参数选择机制
这一功能的加入标志着Diffusers在模型优化方向上又迈出了重要一步,为社区提供了更强大的工具来部署高效的扩散模型应用。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C098
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.56 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
233
97
暂无简介
Dart
728
175
React Native鸿蒙化仓库
JavaScript
287
340
Ascend Extension for PyTorch
Python
287
320
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
704
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
446
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19