深度解析Scipy-2017机器学习教程中的决策树与随机森林
2025-07-10 23:43:52作者:明树来
决策树基础概念
决策树是一种直观且易于理解的机器学习算法,它通过一系列"if-else"规则来做出决策,就像人类做决定的过程一样。决策树的核心思想是通过对数据特征进行二元分割来构建预测模型。
决策树的特点
- 数据预处理简单:能够处理各种类型的数据(连续型和离散型),且对特征缩放不敏感
- 非参数模型:模型复杂度会随着数据量的增加而增加,没有固定的参数数量限制
- 可解释性强:决策规则清晰,容易理解
决策树回归
决策树不仅可以用于分类,也可以用于回归任务。在回归问题中,决策树通过将输入空间划分为多个区域,并在每个区域内预测一个常数值(通常是该区域内目标值的平均值)。
from sklearn.tree import DecisionTreeRegressor
reg = DecisionTreeRegressor(max_depth=5)
reg.fit(X, y)
决策树回归的优缺点
优点:
- 能够捕捉非线性关系
- 对异常值不敏感
- 不需要特征缩放
缺点:
- 容易过拟合(表现为预测结果中的"尖峰")
- 在某些区域可能欠拟合(表现为预测结果中的"平坦"部分)
决策树分类
决策树分类器的工作原理与回归类似,但在每个叶节点上预测的是多数类别而不是平均值。
from sklearn.tree import DecisionTreeClassifier
clf = DecisionTreeClassifier(max_depth=5)
clf.fit(X_train, y_train)
关键参数:max_depth
max_depth参数控制树的深度,直接影响模型的复杂度:
- 深度过小:模型欠拟合,无法捕捉数据中的复杂模式
- 深度过大:模型过拟合,对训练数据中的噪声过于敏感
随机森林
随机森林通过构建多棵决策树并平均它们的预测结果来改善单棵决策树的过拟合问题。每棵树使用:
- 不同的数据子集(有放回抽样)
- 不同的特征子集(无放回抽样)
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(n_estimators=200)
rf.fit(X_train, y_train)
随机森林的优势
- 降低方差:通过平均多棵树的预测结果,减少过拟合
- 提高泛化能力:比单棵决策树表现更稳定
- 特征重要性:可以评估每个特征对预测的贡献程度
梯度提升树
梯度提升是另一种集成方法,它通过顺序构建决策树来迭代改进模型。每棵树都试图纠正前一棵树的错误。
from sklearn.ensemble import GradientBoostingClassifier
gbc = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1)
gbc.fit(X_train, y_train)
关键参数
n_estimators:树的数量learning_rate:每棵树对最终结果的贡献程度max_depth:每棵树的深度
模型选择与调优
使用网格搜索交叉验证可以找到最优的模型参数组合:
from sklearn.model_selection import GridSearchCV
parameters = {'max_depth':[5,7,9], 'learning_rate':[0.1,0.01]}
clf_grid = GridSearchCV(gbc, parameters)
clf_grid.fit(X_train, y_train)
特征重要性分析
随机森林和梯度提升树都可以计算特征重要性,这有助于理解哪些特征对预测最有贡献:
importances = rf.feature_importances_
plt.bar(range(len(importances)), importances)
实践建议
- 对于小型数据集,优先尝试梯度提升树
- 对于大型数据集,随机森林通常更高效
- 始终使用交叉验证来评估模型性能
- 关注特征重要性,可以帮助特征工程和模型解释
决策树及其集成方法在实际应用中表现优异,特别是在需要模型可解释性的场景中。通过合理调参和集成,可以获得既准确又稳定的预测模型。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C097
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
探索未来显示技术:Adafruit_SH1106 图形库 推荐使用 taggingJS:一款轻量级的前端标签插件!【亲测免费】 探索像素级完美的结构化运动:PixSFM 推荐开源项目:DropPoint - 让拖放操作更简单【亲测免费】 推荐开源项目:picocom——小巧而强大的串口通信工具 推荐使用:NATS .NET 客户端【亲测免费】 推荐开源项目:MiracleCast - 智能无线显示实现 探索安全新维度:backdoor-apk 动态后门注入工具 探秘Viasfora:Visual Studio 2022的文本编辑增强利器 推荐使用:go-reuseport - 实现高效端口复用的Go语言库
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
477
3.55 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
232
97
暂无简介
Dart
728
175
React Native鸿蒙化仓库
JavaScript
287
340
Ascend Extension for PyTorch
Python
287
320
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
704
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
445
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19