`forest-confidence-interval`:随机森林算法的置信区间计算库
森林算法,即随机森林,是机器学习中强大的集成方法,用于分类和回归任务。然而,这些算法的预测结果确实存在一定的误差。为了更好地理解预测的不确定性,我们可以利用forest-confidence-interval这个Python模块。
项目介绍
forest-confidence-interval为scikit-learn的随机森林回归或分类对象提供了计算方差和置信区间的功能。它基于Stefan Wager的R代码randomForestCI(现已被grf取代)进行构建,并遵循MIT开源许可协议。该库兼容Python 2.7和Python 3.6版本。
项目技术分析
这个模块的核心功能包括计算袋内(in-bag)估计和预测误差的误差条。其目的是在scikit-learn的随机森林模型基础上增加预测的不确定性评估,这对于了解训练集对预测结果的影响非常重要。依赖项包括numpy、scipy和scikit-learn。
项目及技术应用场景
无论你在进行随机森林回归还是分类任务,只要你想在预测时加入不确定性估计,都可以使用forest-confidence-interval。例如,汽车性能预测(如UCI数据集中的汽车数据集)、垃圾邮件识别等场景,都能体现该库的优势。
项目特点
- 易用性 - 与scikit-learn无缝集成,只需简单调用即可添加置信区间计算。
- 兼容性 - 支持Python 2.7和Python 3.6,且与其他scikit-learn组件良好配合。
- 广泛的适用性 - 不仅适用于随机森林回归,也适用于分类任务。
- 示例丰富 - 提供了详细的示例,帮助用户快速上手并理解如何应用到自己的项目中。
安装与使用
你可以通过pip直接安装forestci,或者从源代码安装。此外,库还提供了一个测试套件,以确保代码的质量和稳定性。
如果你正在寻找一个能够量化随机森林预测不确定性的Python工具,那么forest-confidence-interval无疑是你的最佳选择。不仅能够提升你的模型解释力,还能帮助你更好地理解和评估预测结果的可靠性。现在就加入我们,体验更精细的随机森林预测分析吧!
贡献指南
欢迎有兴趣的开发者参与贡献。我们希望所有贡献者遵守贡献者契约。若遇到问题或有建议,可以通过问题日志提出。同时也欢迎提交改进的Pull Requests。
最后,不要忘了引用项目论文来支持我们的工作:
@article{polimisconfidence,
title={Confidence Intervals for Random Forests in Python},
author={Polimis, Kivan and Rokem, Ariel and Hazelton, Bryna},
journal={Journal of Open Source Software},
volume={2},
number={1},
year={2017}
}
让我们一起推动机器学习领域的发展!
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00