CasADi项目中SX调用的复制消除优化技术
2025-07-06 12:49:08作者:沈韬淼Beryl
概述
在CasADi项目的代码生成过程中,我们发现了一个可以显著提升生成代码效率的优化机会。当SX表达式调用MX函数时,当前的实现会产生不必要的内存拷贝操作。本文将深入分析这一问题,并探讨如何通过复制消除技术来优化生成的C代码。
问题背景
在符号计算领域,CasADi支持两种主要的符号类型:MX和SX。MX类型用于表示更复杂的符号表达式,而SX类型则用于表示更基础的标量操作。当在SX表达式中调用MX函数时,CasADi会生成相应的C代码来实现这一调用。
观察以下Python示例代码:
X = MX.sym("A",3,3)
Y = MX.sym("Y")
f = Function('f',[X,Y],[sumsqr(X)*Y],{"never_inline":True})
X = SX.sym("A",3,3)
Y = SX.sym("Y")
g = Function('g',[X,Y],[f(X,sin(Y))])
g.generate('g.c')
当前生成的C代码中存在明显的优化空间。具体来说,当传递输入参数时,代码会将输入数组的内容复制到工作缓冲区,即使这些数据可以直接从原始输入指针访问。
当前实现分析
当前生成的C代码大致如下:
static int casadi_f0(const casadi_real** arg, casadi_real** res, casadi_int* iw, casadi_real* w, int mem) {
casadi_real a0, a1, a2, a3, a4, a5, a6, a7, a8, a9;
a0=arg[0]? arg[0][0] : 0;
// ... 读取所有输入元素到局部变量 ...
a9=sin(a9);
arg[2]=w+11; // 设置调用参数指针
arg[3]=w+20;
res[1]=w+21;
w[11] = a0; // 将输入复制到工作缓冲区
// ... 复制所有元素 ...
w[20] = a9;
if (casadi_f1(arg+2, res+1, iw, w+0, 0)) return 1;
a1 = w[21];
if (res[0]!=0) res[0][0]=a1;
return 0;
}
这种实现方式存在两个主要问题:
- 不必要的输入数据复制:将输入数组内容复制到工作缓冲区
- 多余的局部变量:先将输入读取到局部变量,再写入工作缓冲区
优化方案
我们可以通过复制消除技术来优化这一过程。优化后的代码可以直接使用输入指针,避免不必要的复制操作:
static int casadi_f0(const casadi_real** arg, casadi_real** res, casadi_int* iw, casadi_real* w, int mem) {
casadi_real a9;
a9=sin(arg[1][0]);
arg[2]=arg[0]; // 直接使用输入指针
arg[3]=w+20;
res[1]=w+21;
w[20] = a9;
if (casadi_f1(arg+2, res+1, iw, w+0, 0)) return 1;
if (res[0]!=0) res[0][0]=w[21];
return 0;
}
实现关键点
要实现这种优化,需要解决以下几个技术问题:
- 输入使用分析:检测节点是否仅作为调用输入使用,且输入完全被一个输入参数覆盖(可能带有偏移量)
- 变量活性分析:注意处理活动变量的重用情况
- 代码生成调整:在代码生成循环中,有条件地生成复制操作或直接使用输入指针
性能影响
这种优化可以带来多方面的性能提升:
- 减少内存访问次数:避免了输入数据的读取和写入操作
- 降低内存使用:减少了工作缓冲区的使用量
- 提高指令缓存命中率:生成的代码更简洁,指令更少
结论
通过对CasADi中SX调用MX函数的代码生成过程进行复制消除优化,我们可以显著提高生成代码的执行效率。这种优化特别适用于包含大量数据传递的场景,如矩阵运算和大规模优化问题的求解。
这种优化技术已经在新版本的CasADi中实现,用户只需更新到最新版本即可自动获得这些性能改进。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
507

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
255
299

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5