CasADi项目中SX调用的复制消除优化技术
2025-07-06 04:59:58作者:沈韬淼Beryl
概述
在CasADi项目的代码生成过程中,我们发现了一个可以显著提升生成代码效率的优化机会。当SX表达式调用MX函数时,当前的实现会产生不必要的内存拷贝操作。本文将深入分析这一问题,并探讨如何通过复制消除技术来优化生成的C代码。
问题背景
在符号计算领域,CasADi支持两种主要的符号类型:MX和SX。MX类型用于表示更复杂的符号表达式,而SX类型则用于表示更基础的标量操作。当在SX表达式中调用MX函数时,CasADi会生成相应的C代码来实现这一调用。
观察以下Python示例代码:
X = MX.sym("A",3,3)
Y = MX.sym("Y")
f = Function('f',[X,Y],[sumsqr(X)*Y],{"never_inline":True})
X = SX.sym("A",3,3)
Y = SX.sym("Y")
g = Function('g',[X,Y],[f(X,sin(Y))])
g.generate('g.c')
当前生成的C代码中存在明显的优化空间。具体来说,当传递输入参数时,代码会将输入数组的内容复制到工作缓冲区,即使这些数据可以直接从原始输入指针访问。
当前实现分析
当前生成的C代码大致如下:
static int casadi_f0(const casadi_real** arg, casadi_real** res, casadi_int* iw, casadi_real* w, int mem) {
casadi_real a0, a1, a2, a3, a4, a5, a6, a7, a8, a9;
a0=arg[0]? arg[0][0] : 0;
// ... 读取所有输入元素到局部变量 ...
a9=sin(a9);
arg[2]=w+11; // 设置调用参数指针
arg[3]=w+20;
res[1]=w+21;
w[11] = a0; // 将输入复制到工作缓冲区
// ... 复制所有元素 ...
w[20] = a9;
if (casadi_f1(arg+2, res+1, iw, w+0, 0)) return 1;
a1 = w[21];
if (res[0]!=0) res[0][0]=a1;
return 0;
}
这种实现方式存在两个主要问题:
- 不必要的输入数据复制:将输入数组内容复制到工作缓冲区
- 多余的局部变量:先将输入读取到局部变量,再写入工作缓冲区
优化方案
我们可以通过复制消除技术来优化这一过程。优化后的代码可以直接使用输入指针,避免不必要的复制操作:
static int casadi_f0(const casadi_real** arg, casadi_real** res, casadi_int* iw, casadi_real* w, int mem) {
casadi_real a9;
a9=sin(arg[1][0]);
arg[2]=arg[0]; // 直接使用输入指针
arg[3]=w+20;
res[1]=w+21;
w[20] = a9;
if (casadi_f1(arg+2, res+1, iw, w+0, 0)) return 1;
if (res[0]!=0) res[0][0]=w[21];
return 0;
}
实现关键点
要实现这种优化,需要解决以下几个技术问题:
- 输入使用分析:检测节点是否仅作为调用输入使用,且输入完全被一个输入参数覆盖(可能带有偏移量)
- 变量活性分析:注意处理活动变量的重用情况
- 代码生成调整:在代码生成循环中,有条件地生成复制操作或直接使用输入指针
性能影响
这种优化可以带来多方面的性能提升:
- 减少内存访问次数:避免了输入数据的读取和写入操作
- 降低内存使用:减少了工作缓冲区的使用量
- 提高指令缓存命中率:生成的代码更简洁,指令更少
结论
通过对CasADi中SX调用MX函数的代码生成过程进行复制消除优化,我们可以显著提高生成代码的执行效率。这种优化特别适用于包含大量数据传递的场景,如矩阵运算和大规模优化问题的求解。
这种优化技术已经在新版本的CasADi中实现,用户只需更新到最新版本即可自动获得这些性能改进。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 单总线CPU设计实训代码:计算机组成原理最佳学习资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
462
3.44 K
Ascend Extension for PyTorch
Python
269
309
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
190
75
暂无简介
Dart
714
171
React Native鸿蒙化仓库
JavaScript
284
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
421
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
119
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692