dplyr中使用group_by与rle实现分组连续值统计
问题背景
在使用R语言进行数据分析时,我们经常需要对数据进行分组统计。dplyr包中的group_by函数是进行分组操作的强大工具。然而,当我们需要统计分组内连续出现的相同值时,情况会变得稍微复杂一些。
原始问题分析
用户davidss101遇到了一个具体问题:他有一个包含两列的数据框,第一列(column1)是分组变量,第二列(column2)是包含0和1的二进制值。他想要对数据进行分组后,统计每个组内连续出现1或0的次数。
用户最初尝试的代码是:
df2 <- df1 %>% group_by(column1) %>% reframe(data.frame(unclass(rle(df1$column2))))
这段代码的问题在于rle函数没有正确识别分组结构,而是对整个column2列进行了游程编码,忽略了group_by的分组效果。
解决方案探索
方法一:使用rleid函数
用户最终找到了一个有效的解决方案,使用了data.table包中的rleid函数:
df2 <- df1 %>%
group_by(column1) %>%
mutate(sequence = data.table::rleid(column2 == 1)) %>%
filter(column2 == 1) %>%
group_by(column1, sequence) %>%
summarise(length = n())
这个解决方案的工作原理是:
- 首先按column1分组
- 使用rleid为连续的1创建序列号
- 过滤出所有值为1的行
- 再次按column1和序列号分组
- 统计每组中的行数,即连续1的长度
方法二:纯dplyr解决方案
如果不希望引入data.table依赖,也可以使用纯dplyr的方法:
df2 <- df1 %>%
group_by(column1) %>%
mutate(change = column2 != lag(column2, default = first(column2))) %>%
mutate(sequence = cumsum(change)) %>%
group_by(column1, sequence) %>%
summarise(
value = first(column2),
length = n(),
.groups = "drop"
) %>%
select(-sequence)
这种方法通过检测值变化来创建分组序列,然后统计每个序列的长度。
技术要点
-
游程编码(RLE):一种简单的数据压缩形式,将连续重复的值存储为单个值和计数。
-
分组操作:dplyr的group_by函数创建分组上下文,后续操作会在每个组内独立执行。
-
值变化检测:通过比较当前行与前一行来识别值的变化点。
-
序列生成:使用cumsum在检测到变化点时递增序列号。
实际应用建议
-
对于大数据集,data.table的rleid函数通常性能更好。
-
如果只需要统计特定值(如1)的连续出现情况,可以先过滤再统计,可以提高效率。
-
考虑使用tidyr的complete函数确保结果包含所有可能的分组组合,即使某些组没有连续值。
-
对于更复杂的连续模式识别,可以考虑使用stringr包将列转换为字符串后使用正则表达式处理。
总结
在dplyr中实现分组内的游程编码需要特别注意分组上下文的有效传递。通过结合group_by和适当的序列生成方法,我们可以有效地统计分组内连续值的出现情况。根据具体需求和性能考虑,可以选择使用data.table的rleid函数或纯dplyr的实现方式。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0114
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00