首页
/ dplyr中按组重新缩放变量的最佳实践

dplyr中按组重新缩放变量的最佳实践

2025-06-10 01:27:37作者:廉彬冶Miranda

在数据分析工作中,我们经常需要对数据进行分组处理,并按组对某些变量进行重新缩放。本文将以dplyr包为例,探讨在R语言中实现这一功能的几种方法,并分析它们的优缺点。

问题背景

假设我们有一个包含企鹅数据的数据框,其中包含不同物种(species)的企鹅信息,以及一些以"bill_"开头的变量(如bill_length、bill_depth等)。我们的目标是按物种分组,并将这些"bill_"开头的变量除以它们在各组内的平均值,实现组内标准化。

解决方案比较

1. 使用mutate函数

dplyr中的mutate函数是最直接的选择,它允许我们修改现有列或创建新列,同时保持数据框的行数不变:

penguins |> 
  mutate(
    .by = species,
    across(
      .cols = starts_with("bill_"),
      .fns = ~.x / mean(.x, na.rm = TRUE)
    )
  )

这种方法简洁明了,利用了dplyr的.by参数进行分组,避免了显式的group_by/ungroup操作。across函数则帮助我们批量处理多个列。

2. 其他包中的实现

作为对比,我们看看在其他R包中如何实现类似功能:

data.table方法:

penguins[,
  by = species,
  names(.SD) := lapply(.SD, \(x) x / mean(x)), .SDcols = patterns("^bill_")
]

base R方法:

cols <- grep("^bill_", names(penguins), value = TRUE)
penguins |>
  split(~species) |>
  lapply(\(x) { x[cols] <- lapply(x[cols], \(y) y / mean(y)); x}) |>
  do.call(what = rbind)

plyr方法:

cols <- grep("^bill_", names(penguins), value = TRUE)
ddply(penguins, .(species), \(x) {x[cols] <- lapply(x[cols], \(y) y / mean(y)); x})

相比之下,dplyr的mutate方法更加简洁和易读。

常见误区

在解决这个问题时,开发者可能会犯以下错误:

  1. 错误使用summarize函数:summarize通常用于聚合数据,会改变数据框的行数,不适合用于修改列的操作。

  2. 忽略mutate的.by参数:在dplyr 1.1.0及以上版本中,mutate支持.by参数,可以避免显式的group_by/ungroup操作。

  3. 过度依赖reframe函数:reframe是用于返回任意大小结果的函数,不适合简单的列修改操作。

性能考虑

对于大型数据集,dplyr的mutate配合.by参数通常比传统的group_by/mutate/ungroup组合更高效,因为.by参数在内部进行了优化。此外,across函数也比单独处理每列更高效。

结论

在dplyr中按组重新缩放变量的最佳实践是使用mutate函数配合.by参数和across函数。这种方法不仅代码简洁,而且性能良好,是处理这类问题的首选方案。

对于从其他包(如data.table或plyr)迁移过来的用户,理解dplyr的这种范式可能需要一些适应,但一旦掌握,代码的可读性和维护性都会显著提高。

登录后查看全文
热门项目推荐

项目优选

收起
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
179
263
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
295
331
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K
harmony-utilsharmony-utils
harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
18
0
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0
kernelkernel
deepin linux kernel
C
22
5
WxJavaWxJava
微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58