dplyr中按组重新缩放变量的最佳实践
在数据分析工作中,我们经常需要对数据进行分组处理,并按组对某些变量进行重新缩放。本文将以dplyr包为例,探讨在R语言中实现这一功能的几种方法,并分析它们的优缺点。
问题背景
假设我们有一个包含企鹅数据的数据框,其中包含不同物种(species)的企鹅信息,以及一些以"bill_"开头的变量(如bill_length、bill_depth等)。我们的目标是按物种分组,并将这些"bill_"开头的变量除以它们在各组内的平均值,实现组内标准化。
解决方案比较
1. 使用mutate函数
dplyr中的mutate函数是最直接的选择,它允许我们修改现有列或创建新列,同时保持数据框的行数不变:
penguins |>
mutate(
.by = species,
across(
.cols = starts_with("bill_"),
.fns = ~.x / mean(.x, na.rm = TRUE)
)
)
这种方法简洁明了,利用了dplyr的.by参数进行分组,避免了显式的group_by/ungroup操作。across函数则帮助我们批量处理多个列。
2. 其他包中的实现
作为对比,我们看看在其他R包中如何实现类似功能:
data.table方法:
penguins[,
by = species,
names(.SD) := lapply(.SD, \(x) x / mean(x)), .SDcols = patterns("^bill_")
]
base R方法:
cols <- grep("^bill_", names(penguins), value = TRUE)
penguins |>
split(~species) |>
lapply(\(x) { x[cols] <- lapply(x[cols], \(y) y / mean(y)); x}) |>
do.call(what = rbind)
plyr方法:
cols <- grep("^bill_", names(penguins), value = TRUE)
ddply(penguins, .(species), \(x) {x[cols] <- lapply(x[cols], \(y) y / mean(y)); x})
相比之下,dplyr的mutate方法更加简洁和易读。
常见误区
在解决这个问题时,开发者可能会犯以下错误:
-
错误使用summarize函数:summarize通常用于聚合数据,会改变数据框的行数,不适合用于修改列的操作。
-
忽略mutate的.by参数:在dplyr 1.1.0及以上版本中,mutate支持.by参数,可以避免显式的group_by/ungroup操作。
-
过度依赖reframe函数:reframe是用于返回任意大小结果的函数,不适合简单的列修改操作。
性能考虑
对于大型数据集,dplyr的mutate配合.by参数通常比传统的group_by/mutate/ungroup组合更高效,因为.by参数在内部进行了优化。此外,across函数也比单独处理每列更高效。
结论
在dplyr中按组重新缩放变量的最佳实践是使用mutate函数配合.by参数和across函数。这种方法不仅代码简洁,而且性能良好,是处理这类问题的首选方案。
对于从其他包(如data.table或plyr)迁移过来的用户,理解dplyr的这种范式可能需要一些适应,但一旦掌握,代码的可读性和维护性都会显著提高。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C045
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00