OpenCompass项目中处理大模型显存优化的技术探讨
2025-06-08 01:45:16作者:史锋燃Gardner
背景介绍
在OpenCompass项目中使用大语言模型进行长文本推理时,显存管理是一个关键挑战。当处理128k token长度的needlebench测试时,即使用8张NVIDIA A100显卡,仍然会遇到显存爆炸的问题。这反映了当前大模型推理中普遍存在的显存瓶颈。
问题分析
从技术配置来看,用户尝试使用HuggingFaceCausalLM接口加载Llama-3-8B-Instruct模型,设置了122880的最大序列长度,并分配了7块GPU进行推理。这种配置下显存不足的主要原因是:
- 长序列导致注意力机制的计算复杂度呈平方级增长
- 模型参数本身需要占用大量显存
- 推理过程中的中间激活值占用显存
显存优化方案
针对这类问题,可以考虑以下几种技术方案:
1. 模型量化技术
将模型从FP32量化为FP16或INT8可以显著减少显存占用。对于Llama-3这类模型,使用4-bit量化通常可以在保持较好精度的同时将显存需求降低到原来的1/4。
2. 注意力优化
采用Flash Attention或Memory Efficient Attention等优化后的注意力实现,可以降低长序列处理时的显存消耗。这些技术通过重新组织计算顺序来减少中间激活值的存储需求。
3. 分块处理策略
对于超长序列,可以采用分块处理的方式,将输入序列分成多个片段分别处理,然后合并结果。这种方法虽然会增加一些计算开销,但能有效控制峰值显存使用。
4. 使用专用推理框架
如LMDeploy等专门优化的推理框架,内置了多种显存优化技术,包括连续批处理、动态批处理等策略,可以更高效地利用GPU资源。
实践建议
在实际应用中,建议采用以下步骤进行显存优化:
- 首先尝试模型量化,这是最直接的显存节省方法
- 评估不同注意力实现方案的显存占用和推理速度
- 对于超长序列,考虑实现分块处理逻辑
- 在框架选择上,可以对比HuggingFace原生实现与优化框架的性能差异
总结
大语言模型的长序列推理显存优化是一个系统工程,需要从模型量化、计算优化和框架选择等多个维度综合考虑。OpenCompass项目作为评估平台,可以集成多种优化技术,为用户提供更高效的评估方案。未来随着模型规模的持续增长,显存优化技术将变得更加重要。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.54 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
93
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
724
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19