OpenCompass项目中处理大模型显存优化的技术探讨
2025-06-08 22:47:48作者:史锋燃Gardner
背景介绍
在OpenCompass项目中使用大语言模型进行长文本推理时,显存管理是一个关键挑战。当处理128k token长度的needlebench测试时,即使用8张NVIDIA A100显卡,仍然会遇到显存爆炸的问题。这反映了当前大模型推理中普遍存在的显存瓶颈。
问题分析
从技术配置来看,用户尝试使用HuggingFaceCausalLM接口加载Llama-3-8B-Instruct模型,设置了122880的最大序列长度,并分配了7块GPU进行推理。这种配置下显存不足的主要原因是:
- 长序列导致注意力机制的计算复杂度呈平方级增长
- 模型参数本身需要占用大量显存
- 推理过程中的中间激活值占用显存
显存优化方案
针对这类问题,可以考虑以下几种技术方案:
1. 模型量化技术
将模型从FP32量化为FP16或INT8可以显著减少显存占用。对于Llama-3这类模型,使用4-bit量化通常可以在保持较好精度的同时将显存需求降低到原来的1/4。
2. 注意力优化
采用Flash Attention或Memory Efficient Attention等优化后的注意力实现,可以降低长序列处理时的显存消耗。这些技术通过重新组织计算顺序来减少中间激活值的存储需求。
3. 分块处理策略
对于超长序列,可以采用分块处理的方式,将输入序列分成多个片段分别处理,然后合并结果。这种方法虽然会增加一些计算开销,但能有效控制峰值显存使用。
4. 使用专用推理框架
如LMDeploy等专门优化的推理框架,内置了多种显存优化技术,包括连续批处理、动态批处理等策略,可以更高效地利用GPU资源。
实践建议
在实际应用中,建议采用以下步骤进行显存优化:
- 首先尝试模型量化,这是最直接的显存节省方法
- 评估不同注意力实现方案的显存占用和推理速度
- 对于超长序列,考虑实现分块处理逻辑
- 在框架选择上,可以对比HuggingFace原生实现与优化框架的性能差异
总结
大语言模型的长序列推理显存优化是一个系统工程,需要从模型量化、计算优化和框架选择等多个维度综合考虑。OpenCompass项目作为评估平台,可以集成多种优化技术,为用户提供更高效的评估方案。未来随着模型规模的持续增长,显存优化技术将变得更加重要。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
215
235
暂无简介
Dart
662
152
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
253
320
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
297
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.18 K
646
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
217
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编程语言开发者文档。
59
818