OpenCompass项目中处理大模型显存优化的技术探讨
2025-06-08 01:45:16作者:史锋燃Gardner
背景介绍
在OpenCompass项目中使用大语言模型进行长文本推理时,显存管理是一个关键挑战。当处理128k token长度的needlebench测试时,即使用8张NVIDIA A100显卡,仍然会遇到显存爆炸的问题。这反映了当前大模型推理中普遍存在的显存瓶颈。
问题分析
从技术配置来看,用户尝试使用HuggingFaceCausalLM接口加载Llama-3-8B-Instruct模型,设置了122880的最大序列长度,并分配了7块GPU进行推理。这种配置下显存不足的主要原因是:
- 长序列导致注意力机制的计算复杂度呈平方级增长
- 模型参数本身需要占用大量显存
- 推理过程中的中间激活值占用显存
显存优化方案
针对这类问题,可以考虑以下几种技术方案:
1. 模型量化技术
将模型从FP32量化为FP16或INT8可以显著减少显存占用。对于Llama-3这类模型,使用4-bit量化通常可以在保持较好精度的同时将显存需求降低到原来的1/4。
2. 注意力优化
采用Flash Attention或Memory Efficient Attention等优化后的注意力实现,可以降低长序列处理时的显存消耗。这些技术通过重新组织计算顺序来减少中间激活值的存储需求。
3. 分块处理策略
对于超长序列,可以采用分块处理的方式,将输入序列分成多个片段分别处理,然后合并结果。这种方法虽然会增加一些计算开销,但能有效控制峰值显存使用。
4. 使用专用推理框架
如LMDeploy等专门优化的推理框架,内置了多种显存优化技术,包括连续批处理、动态批处理等策略,可以更高效地利用GPU资源。
实践建议
在实际应用中,建议采用以下步骤进行显存优化:
- 首先尝试模型量化,这是最直接的显存节省方法
- 评估不同注意力实现方案的显存占用和推理速度
- 对于超长序列,考虑实现分块处理逻辑
- 在框架选择上,可以对比HuggingFace原生实现与优化框架的性能差异
总结
大语言模型的长序列推理显存优化是一个系统工程,需要从模型量化、计算优化和框架选择等多个维度综合考虑。OpenCompass项目作为评估平台,可以集成多种优化技术,为用户提供更高效的评估方案。未来随着模型规模的持续增长,显存优化技术将变得更加重要。
登录后查看全文
热门项目推荐
相关项目推荐
暂无数据
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
349
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758