多智能体强化学习中的信任区域策略优化 - 实战指南
2024-09-12 19:23:23作者:平淮齐Percy
本指南旨在帮助您深入了解并实践 Trust Region Policy Optimisation in Multi-Agent Reinforcement Learning 开源项目,该项目位于 GitHub 上。我们将通过几个关键步骤带您探索其目录结构、启动文件和配置文件,以便您可以高效地使用这个强大的多智能体系统。
1. 目录结构及介绍
项目遵循清晰的组织结构来实现其功能。下面是主要的目录及其大致用途:
algorithms: 包含核心算法实现,如 HATRPO 和 HAPPO。configs: 配置文件的存放处,用于调整实验参数。envs: 特定环境的适配代码,包括 Multi-Agent MuJoCo 和 StarCraft II 的环境设置。plots: 数据可视化脚本,帮助分析训练结果。runners: 运行实验的驱动程序,执行具体的训练和测试任务。scripts: 启动脚本,提供一键式操作以运行环境准备或实验。utils: 辅助工具集,包括数据处理、日志记录等通用函数。- 常规文件:
README.md: 项目说明文档。LICENSE: 许可证文件,采用 MIT 协议。requirements.txt: 必要的Python依赖列表。install_sc2.sh: StarCraft II 安装脚本。
2. 项目的启动文件介绍
主要启动点
scripts/train_mujoco.sh: 用于在 Multi-Agent MuJoCo 环境中启动训练的脚本,支持选择 HAPPO 或 HATRPO。scripts/train_smac.sh: 针对 StarCraft II 中的 SMAC 场景的训练脚本,同样允许选择算法类型。install_sc2.sh: 用于快速设置 StarCraft II 所需环境的脚本。
这些脚本自动处理环境配置,并启动选定的算法进行训练,是用户开始实验的快捷入口。
3. 项目的配置文件介绍
配置文件大多位于 configs 文件夹内,这些 .yaml 或其他格式的文件定义了实验的关键参数,比如:
- 学习率
- 策略更新步骤
- 环境特定参数,比如 SMAC 中的 gamma 值。
- 算法参数,例如信任区域的大小或优化步骤的数量。
修改这些配置文件可以让您定制化训练过程,适应不同的研究或应用需求。例如,在进行 HATRPO 或 HAPPO 实验前,可以通过编辑配置文件来调整网络架构、学习速率等,确保算法能够匹配特定的多智能体挑战。
示例配置修改
- 要修改学习速率,找到相应的
.yaml文件中的optimizer.lr参数。 - 若要切换算法,可以在执行脚本时通过命令行参数指定,或者直接在启动脚本中更改默认算法选项(如将
algo=happo修改为algo=hatrpo)。
通过上述指导,您可以轻松开始使用此项目进行多智能体系统的训练和评估。记得在操作前安装必要的软件包,并根据实际环境调整路径和库版本,确保项目的顺利运行。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135