多智能体强化学习中的信任区域策略优化 - 实战指南
2024-09-12 19:23:23作者:平淮齐Percy
本指南旨在帮助您深入了解并实践 Trust Region Policy Optimisation in Multi-Agent Reinforcement Learning 开源项目,该项目位于 GitHub 上。我们将通过几个关键步骤带您探索其目录结构、启动文件和配置文件,以便您可以高效地使用这个强大的多智能体系统。
1. 目录结构及介绍
项目遵循清晰的组织结构来实现其功能。下面是主要的目录及其大致用途:
algorithms: 包含核心算法实现,如 HATRPO 和 HAPPO。configs: 配置文件的存放处,用于调整实验参数。envs: 特定环境的适配代码,包括 Multi-Agent MuJoCo 和 StarCraft II 的环境设置。plots: 数据可视化脚本,帮助分析训练结果。runners: 运行实验的驱动程序,执行具体的训练和测试任务。scripts: 启动脚本,提供一键式操作以运行环境准备或实验。utils: 辅助工具集,包括数据处理、日志记录等通用函数。- 常规文件:
README.md: 项目说明文档。LICENSE: 许可证文件,采用 MIT 协议。requirements.txt: 必要的Python依赖列表。install_sc2.sh: StarCraft II 安装脚本。
2. 项目的启动文件介绍
主要启动点
scripts/train_mujoco.sh: 用于在 Multi-Agent MuJoCo 环境中启动训练的脚本,支持选择 HAPPO 或 HATRPO。scripts/train_smac.sh: 针对 StarCraft II 中的 SMAC 场景的训练脚本,同样允许选择算法类型。install_sc2.sh: 用于快速设置 StarCraft II 所需环境的脚本。
这些脚本自动处理环境配置,并启动选定的算法进行训练,是用户开始实验的快捷入口。
3. 项目的配置文件介绍
配置文件大多位于 configs 文件夹内,这些 .yaml 或其他格式的文件定义了实验的关键参数,比如:
- 学习率
- 策略更新步骤
- 环境特定参数,比如 SMAC 中的 gamma 值。
- 算法参数,例如信任区域的大小或优化步骤的数量。
修改这些配置文件可以让您定制化训练过程,适应不同的研究或应用需求。例如,在进行 HATRPO 或 HAPPO 实验前,可以通过编辑配置文件来调整网络架构、学习速率等,确保算法能够匹配特定的多智能体挑战。
示例配置修改
- 要修改学习速率,找到相应的
.yaml文件中的optimizer.lr参数。 - 若要切换算法,可以在执行脚本时通过命令行参数指定,或者直接在启动脚本中更改默认算法选项(如将
algo=happo修改为algo=hatrpo)。
通过上述指导,您可以轻松开始使用此项目进行多智能体系统的训练和评估。记得在操作前安装必要的软件包,并根据实际环境调整路径和库版本,确保项目的顺利运行。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 STM32到GD32项目移植完全指南:从兼容性到实战技巧 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
420
3.22 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
330
暂无简介
Dart
685
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869