Space and Time Labs的proof-of-sql项目中的SQL解析器重构
在Space and Time Labs的proof-of-sql项目中,团队正在进行一项重要的技术重构工作,旨在提升SQL解析能力并增强系统兼容性。这项工作的核心是将现有的自定义SQL解析器逐步迁移到成熟的sqlparser库上。
背景与动机
proof-of-sql项目最初使用了一个自研的SQL解析器,但随着项目发展,需要支持更多SQL特性。sqlparser作为一个功能丰富且兼容no_std环境的解析器,已被DataFusion等知名项目采用,成为Arrow生态系统的一部分。这种迁移不仅能带来更全面的SQL支持,还能提高与其他生态系统的兼容性。
技术实现细节
本次重构的具体任务是替换proof_of_sql_parser中间抽象语法树(Intermediate AST)中的OrderBy结构体,改用sqlparser库中提供的OrderByExpr结构体。这种替换涉及以下技术考量:
-
AST结构统一:将项目内部的自定义AST节点逐步替换为标准化的sqlparser AST节点,为后续功能扩展奠定基础
-
兼容性保证:项目已经建立了从自定义AST到sqlparser AST的转换机制,确保重构不会破坏现有功能
-
渐进式迁移:采用分步骤的替换策略,先处理相对独立的OrderBy节点,为更大规模的迁移积累经验
技术价值
这种重构带来的主要技术优势包括:
-
功能增强:sqlparser提供了更完整的SQL语法支持,为项目未来添加窗口函数、复杂子查询等高级特性铺平道路
-
性能优化:成熟的解析器库通常经过充分优化,可能带来解析性能的提升
-
生态整合:与Arrow生态系统的更好兼容,便于未来与DataFusion等工具集成
-
维护简化:减少自定义解析代码量,降低长期维护成本
实施策略
项目团队采用了稳健的实施方法:
- 首先建立双向转换层,确保新旧AST可以互转
- 然后针对特定AST节点进行逐步替换
- 每次替换后都进行充分测试验证
- 最终目标是完全过渡到sqlparser AST
这种渐进式重构策略最大限度地降低了风险,同时保证了开发效率。OrderBy节点的成功替换为后续更大规模的AST迁移提供了宝贵经验。
通过这样的技术演进,proof-of-sql项目正在构建更强大、更灵活的SQL处理能力,为未来的功能扩展和性能优化打下坚实基础。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00