Apache Liminal 项目下载及安装教程
2024-11-29 06:39:52作者:凤尚柏Louis
1. 项目介绍
Apache Liminal 是一个端到端的平台,旨在帮助数据工程师和科学家以稳健和敏捷的方式构建、训练和部署机器学习模型。该平台提供了用于数据提取和特征工程的抽象和声明性功能,随后是模型训练和服务的功能。Apache Liminal 的目标是使机器学习过程标准化,让数据科学家能够快速将成功的实验转化为自动化的模型训练、验证、部署和生产推理管道,从而让他们从工程和非功能性任务中解放出来,专注于机器学习代码和工件。
2. 项目下载位置
您可以在 Apache 软件基金会的 GitHub 仓库中找到 Apache Liminal 项目,下载位置为:Apache Liminal GitHub 仓库。
3. 项目安装环境配置
在开始安装前,请确保您的系统中已安装以下环境:
- Python 3.6 或更高版本
- Docker
- Kubernetes(可选,用于生产部署)
以下是环境配置的步骤和图片示例:
安装 Python
确保您的系统中安装了 Python 3.6 或更高版本。在终端中运行以下命令来检查 Python 版本:
python --version

安装 Docker
访问 Docker 官方网站,根据您的操作系统下载并安装 Docker。

配置 Kubernetes(可选)
如果需要在 Kubernetes 上部署,请确保已经配置了相应的 Kubernetes 集群。

4. 项目安装方式
以下是将 Apache Liminal 项目安装到您的本地机器的步骤:
- 克隆项目仓库到本地:
git clone https://github.com/apache/incubator-liminal.git
- 进入项目目录并安装依赖:
cd incubator-liminal
pip install -r requirements.txt
- 如果需要,设置
LIMINAL_HOME环境变量:
export LIMINAL_HOME=/path/to/liminal_home
- 构建项目:
liminal build
- 部署项目:
liminal deploy
5. 项目处理脚本
Apache Liminal 使用 YAML 文件定义工作流。以下是一个简单的 YAML 配置文件示例,您可以在此基础上根据需要进行修改和扩展。
name: MyLiminalStack
owner: YourName
volumes:
- volume: myvol1
local: path: /path/to/local/volume
images:
- image: my_python_task_img
type: python
source: write_inputs
pipelines:
- pipeline: my_pipeline
start_date: '1970-01-01'
timeout_minutes: 45
schedule: '0 * * * *'
tasks:
- task: my_python_task
type: python
description: Static input task
image: my_python_task_img
env_vars:
NUM_FILES: '10'
NUM_SPLITS: '3'
mounts:
- mount: mymount
volume: myvol1
path: /mnt/vol1
cmd: 'python -u write_inputs.py'
确保按照项目要求编写和配置您的处理脚本。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
475
3.54 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
225
94
暂无简介
Dart
725
175
React Native鸿蒙化仓库
JavaScript
287
339
Ascend Extension for PyTorch
Python
284
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19