Apache Liminal 项目下载及安装教程
2024-11-29 03:28:30作者:凤尚柏Louis
1. 项目介绍
Apache Liminal 是一个端到端的平台,旨在帮助数据工程师和科学家以稳健和敏捷的方式构建、训练和部署机器学习模型。该平台提供了用于数据提取和特征工程的抽象和声明性功能,随后是模型训练和服务的功能。Apache Liminal 的目标是使机器学习过程标准化,让数据科学家能够快速将成功的实验转化为自动化的模型训练、验证、部署和生产推理管道,从而让他们从工程和非功能性任务中解放出来,专注于机器学习代码和工件。
2. 项目下载位置
您可以在 Apache 软件基金会的 GitHub 仓库中找到 Apache Liminal 项目,下载位置为:Apache Liminal GitHub 仓库。
3. 项目安装环境配置
在开始安装前,请确保您的系统中已安装以下环境:
- Python 3.6 或更高版本
- Docker
- Kubernetes(可选,用于生产部署)
以下是环境配置的步骤和图片示例:
安装 Python
确保您的系统中安装了 Python 3.6 或更高版本。在终端中运行以下命令来检查 Python 版本:
python --version

安装 Docker
访问 Docker 官方网站,根据您的操作系统下载并安装 Docker。

配置 Kubernetes(可选)
如果需要在 Kubernetes 上部署,请确保已经配置了相应的 Kubernetes 集群。

4. 项目安装方式
以下是将 Apache Liminal 项目安装到您的本地机器的步骤:
- 克隆项目仓库到本地:
git clone https://github.com/apache/incubator-liminal.git
- 进入项目目录并安装依赖:
cd incubator-liminal
pip install -r requirements.txt
- 如果需要,设置
LIMINAL_HOME环境变量:
export LIMINAL_HOME=/path/to/liminal_home
- 构建项目:
liminal build
- 部署项目:
liminal deploy
5. 项目处理脚本
Apache Liminal 使用 YAML 文件定义工作流。以下是一个简单的 YAML 配置文件示例,您可以在此基础上根据需要进行修改和扩展。
name: MyLiminalStack
owner: YourName
volumes:
- volume: myvol1
local: path: /path/to/local/volume
images:
- image: my_python_task_img
type: python
source: write_inputs
pipelines:
- pipeline: my_pipeline
start_date: '1970-01-01'
timeout_minutes: 45
schedule: '0 * * * *'
tasks:
- task: my_python_task
type: python
description: Static input task
image: my_python_task_img
env_vars:
NUM_FILES: '10'
NUM_SPLITS: '3'
mounts:
- mount: mymount
volume: myvol1
path: /mnt/vol1
cmd: 'python -u write_inputs.py'
确保按照项目要求编写和配置您的处理脚本。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178