Apache Liminal 入门指南
Apache Liminal 是一个端到端的数据工程和机器学习平台,旨在加速数据科学家从成功的实验过渡到生产中的自动化模型训练、验证、部署与推理过程。它通过提供一种领域特定语言(DSL),使得在Apache Airflow之上构建ML工作流成为可能。
项目介绍
Apache Liminal 提供了一种高效的方式来操作化机器学习流程,使数据科学家能够无缝地将实验成果转化为可部署的生产级管道。这个项目利用了Apache Airflow的强大调度能力,并加以扩展,以支持更为复杂的机器学习生命周期管理,包括但不限于模型训练、验证、以及持续的推理服务。
项目快速启动
要快速启动Apache Liminal项目,您需遵循以下步骤:
安装与配置
首先,确保您的环境已安装了必要的依赖项,并克隆项目仓库:
git clone https://github.com/apache/incubator-liminal.git
cd incubator-liminal
创建并部署管道
创建一个新的Liminal管道:
liminal create
接下来,部署该管道以准备执行:
cd <你的Liminal代码路径>
liminal deploy
建议升级Liminal后执行 liminal deploy --clean 以确保使用最新版本重新构建Airflow Docker容器。
启动服务器来运行您的流程:
liminal start
测试管道
访问 http://localhost:8080/admin 查看您的管道是否已正确安排并监控其执行情况。
应用案例和最佳实践
虽然具体的应用案例和最佳实践未在上述文档中详细列出,但Apache Liminal非常适合于那些需要快速迭代模型、自动化测试和部署的场景,如在线推荐系统、异常检测或任何基于时间序列分析的任务。最佳实践通常涉及明确分离数据预处理、模型训练、评估和部署的各个阶段,利用Liminal DSL来清晰定义这些步骤,并确保工作流易于维护和扩展。
典型生态项目
Apache Liminal集成Apache Airflow,使得它天然适合于与广泛的Apache生态系统项目协同工作,例如与Hadoop、Spark组合来处理大规模数据集,或者结合Kubernetes进行动态资源管理。此外,由于它是基于Python构建的,因此可以轻松与其他科学计算和数据分析库(如NumPy、Pandas、TensorFlow或PyTorch)集成,实现从数据清洗到模型训练的全流程管理。
通过以上步骤,您可以开始探索和利用Apache Liminal的强大功能,构建自己的机器学习流水线。请注意,深入理解每个组件以及如何优化工作流对于实现最佳性能至关重要。不断参考官方文档和社区资源,有助于深化对Apache Liminal的掌握。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00