Apache Liminal 入门指南
Apache Liminal 是一个端到端的数据工程和机器学习平台,旨在加速数据科学家从成功的实验过渡到生产中的自动化模型训练、验证、部署与推理过程。它通过提供一种领域特定语言(DSL),使得在Apache Airflow之上构建ML工作流成为可能。
项目介绍
Apache Liminal 提供了一种高效的方式来操作化机器学习流程,使数据科学家能够无缝地将实验成果转化为可部署的生产级管道。这个项目利用了Apache Airflow的强大调度能力,并加以扩展,以支持更为复杂的机器学习生命周期管理,包括但不限于模型训练、验证、以及持续的推理服务。
项目快速启动
要快速启动Apache Liminal项目,您需遵循以下步骤:
安装与配置
首先,确保您的环境已安装了必要的依赖项,并克隆项目仓库:
git clone https://github.com/apache/incubator-liminal.git
cd incubator-liminal
创建并部署管道
创建一个新的Liminal管道:
liminal create
接下来,部署该管道以准备执行:
cd <你的Liminal代码路径>
liminal deploy
建议升级Liminal后执行 liminal deploy --clean 以确保使用最新版本重新构建Airflow Docker容器。
启动服务器来运行您的流程:
liminal start
测试管道
访问 http://localhost:8080/admin 查看您的管道是否已正确安排并监控其执行情况。
应用案例和最佳实践
虽然具体的应用案例和最佳实践未在上述文档中详细列出,但Apache Liminal非常适合于那些需要快速迭代模型、自动化测试和部署的场景,如在线推荐系统、异常检测或任何基于时间序列分析的任务。最佳实践通常涉及明确分离数据预处理、模型训练、评估和部署的各个阶段,利用Liminal DSL来清晰定义这些步骤,并确保工作流易于维护和扩展。
典型生态项目
Apache Liminal集成Apache Airflow,使得它天然适合于与广泛的Apache生态系统项目协同工作,例如与Hadoop、Spark组合来处理大规模数据集,或者结合Kubernetes进行动态资源管理。此外,由于它是基于Python构建的,因此可以轻松与其他科学计算和数据分析库(如NumPy、Pandas、TensorFlow或PyTorch)集成,实现从数据清洗到模型训练的全流程管理。
通过以上步骤,您可以开始探索和利用Apache Liminal的强大功能,构建自己的机器学习流水线。请注意,深入理解每个组件以及如何优化工作流对于实现最佳性能至关重要。不断参考官方文档和社区资源,有助于深化对Apache Liminal的掌握。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
Kimi-K2-ThinkingKimi-K2-Thinking是最新开源思维模型,作为能动态调用工具的推理代理,通过深度多步推理和稳定工具调用(200-300次连续调用),在HLE、BrowseComp等基准测试中刷新纪录。原生INT4量化模型,256k上下文窗口,实现推理延迟和GPU内存使用的无损降低,支持自主研究、编码和写作等工作流。【此简介由AI生成】Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00