首页
/ Apache Liminal 入门指南

Apache Liminal 入门指南

2024-09-02 06:26:50作者:翟萌耘Ralph

Apache Liminal 是一个端到端的数据工程和机器学习平台,旨在加速数据科学家从成功的实验过渡到生产中的自动化模型训练、验证、部署与推理过程。它通过提供一种领域特定语言(DSL),使得在Apache Airflow之上构建ML工作流成为可能。

项目介绍

Apache Liminal 提供了一种高效的方式来操作化机器学习流程,使数据科学家能够无缝地将实验成果转化为可部署的生产级管道。这个项目利用了Apache Airflow的强大调度能力,并加以扩展,以支持更为复杂的机器学习生命周期管理,包括但不限于模型训练、验证、以及持续的推理服务。

项目快速启动

要快速启动Apache Liminal项目,您需遵循以下步骤:

安装与配置

首先,确保您的环境已安装了必要的依赖项,并克隆项目仓库:

git clone https://github.com/apache/incubator-liminal.git
cd incubator-liminal

创建并部署管道

创建一个新的Liminal管道:

liminal create

接下来,部署该管道以准备执行:

cd <你的Liminal代码路径>
liminal deploy

建议升级Liminal后执行 liminal deploy --clean 以确保使用最新版本重新构建Airflow Docker容器。

启动服务器来运行您的流程:

liminal start

测试管道

访问 http://localhost:8080/admin 查看您的管道是否已正确安排并监控其执行情况。

应用案例和最佳实践

虽然具体的应用案例和最佳实践未在上述文档中详细列出,但Apache Liminal非常适合于那些需要快速迭代模型、自动化测试和部署的场景,如在线推荐系统、异常检测或任何基于时间序列分析的任务。最佳实践通常涉及明确分离数据预处理、模型训练、评估和部署的各个阶段,利用Liminal DSL来清晰定义这些步骤,并确保工作流易于维护和扩展。

典型生态项目

Apache Liminal集成Apache Airflow,使得它天然适合于与广泛的Apache生态系统项目协同工作,例如与Hadoop、Spark组合来处理大规模数据集,或者结合Kubernetes进行动态资源管理。此外,由于它是基于Python构建的,因此可以轻松与其他科学计算和数据分析库(如NumPy、Pandas、TensorFlow或PyTorch)集成,实现从数据清洗到模型训练的全流程管理。


通过以上步骤,您可以开始探索和利用Apache Liminal的强大功能,构建自己的机器学习流水线。请注意,深入理解每个组件以及如何优化工作流对于实现最佳性能至关重要。不断参考官方文档和社区资源,有助于深化对Apache Liminal的掌握。

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
23
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
flutter_flutterflutter_flutter
暂无简介
Dart
526
116
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
988
585
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.42 K
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17
GLM-4.6GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0
giteagitea
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
JavaScript
212
288