首页
/ Apache Liminal 入门指南

Apache Liminal 入门指南

2024-09-02 13:18:24作者:翟萌耘Ralph

Apache Liminal 是一个端到端的数据工程和机器学习平台,旨在加速数据科学家从成功的实验过渡到生产中的自动化模型训练、验证、部署与推理过程。它通过提供一种领域特定语言(DSL),使得在Apache Airflow之上构建ML工作流成为可能。

项目介绍

Apache Liminal 提供了一种高效的方式来操作化机器学习流程,使数据科学家能够无缝地将实验成果转化为可部署的生产级管道。这个项目利用了Apache Airflow的强大调度能力,并加以扩展,以支持更为复杂的机器学习生命周期管理,包括但不限于模型训练、验证、以及持续的推理服务。

项目快速启动

要快速启动Apache Liminal项目,您需遵循以下步骤:

安装与配置

首先,确保您的环境已安装了必要的依赖项,并克隆项目仓库:

git clone https://github.com/apache/incubator-liminal.git
cd incubator-liminal

创建并部署管道

创建一个新的Liminal管道:

liminal create

接下来,部署该管道以准备执行:

cd <你的Liminal代码路径>
liminal deploy

建议升级Liminal后执行 liminal deploy --clean 以确保使用最新版本重新构建Airflow Docker容器。

启动服务器来运行您的流程:

liminal start

测试管道

访问 http://localhost:8080/admin 查看您的管道是否已正确安排并监控其执行情况。

应用案例和最佳实践

虽然具体的应用案例和最佳实践未在上述文档中详细列出,但Apache Liminal非常适合于那些需要快速迭代模型、自动化测试和部署的场景,如在线推荐系统、异常检测或任何基于时间序列分析的任务。最佳实践通常涉及明确分离数据预处理、模型训练、评估和部署的各个阶段,利用Liminal DSL来清晰定义这些步骤,并确保工作流易于维护和扩展。

典型生态项目

Apache Liminal集成Apache Airflow,使得它天然适合于与广泛的Apache生态系统项目协同工作,例如与Hadoop、Spark组合来处理大规模数据集,或者结合Kubernetes进行动态资源管理。此外,由于它是基于Python构建的,因此可以轻松与其他科学计算和数据分析库(如NumPy、Pandas、TensorFlow或PyTorch)集成,实现从数据清洗到模型训练的全流程管理。


通过以上步骤,您可以开始探索和利用Apache Liminal的强大功能,构建自己的机器学习流水线。请注意,深入理解每个组件以及如何优化工作流对于实现最佳性能至关重要。不断参考官方文档和社区资源,有助于深化对Apache Liminal的掌握。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
156
2 K
kernelkernel
deepin linux kernel
C
22
6
pytorchpytorch
Ascend Extension for PyTorch
Python
38
72
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
519
50
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
942
555
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
195
279
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
993
396
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
359
12
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
71