公共活动检测与社交媒体图像感知行为评估模型
公共活动检测与社交媒体图像感知行为评估模型
项目简介
Protest Activity Detection and Perceived Violence Estimation from Social Media Images 是一个基于 PyTorch 的开源项目,由 Donghyeon Won 等人在 ACM Multimedia 2017 大会上发表的论文所提出。该项目旨在通过识别社交媒体上的图像,自动检测公共活动并估计其潜在的行为程度。
项目技术分析
该模型采用了预训练的 ResNet50 架构,这是一种强大的卷积神经网络,在 ImageNet 数据集上进行了微调,以适应特定的公共活动和视觉属性识别任务。项目依赖于 PyTorch 框架,以及 NumPy、Pandas 和 Scikit-Learn 这些常用的 Python 库,提供了一种高效且灵活的方式来处理数据和训练模型。
使用方法
训练模型只需一行命令:
python train.py --data_dir UCLA-protest/ --batch_size 32 --lr 0.002 --print_freq 100 --epochs 100 --cuda
而预测则同样简单:
python pred.py --img_dir path/to/some/image/directory/ --output_csvpath result.csv --model model_best.pth.tar --cuda
UCLA 公共活动图像数据集
这个数据集包含了超过 40,000 张图像,其中约 11,659 张为公共活动相关图像。数据集中还详细记录了各种视觉属性如标语、安保人员存在、夜间场景等的发生频率,以及图像中的行为程度分布。若要获取数据集,请联系项目作者。
模型性能
经过在 UCLA 公共活动数据集上的训练,模型在各类任务上的表现优秀,包括公共活动检测、视觉属性分类和行为程度估计。ROC 曲线显示模型在多个类别上的表现均达到高精度,具有较高的实际应用价值。
项目特点
- 易用性:简单的训练和预测脚本使得模型的部署和测试极其便捷。
- 强大性能:基于 ResNet50 的深度学习模型能准确识别复杂的社会事件特征。
- 广泛应用:适用于社交媒体监控、新闻报道自动化分析等领域,能有效帮助理解和追踪大规模公共事件。
- 丰富的数据资源:UCLA 公共活动数据集提供了大量的真实世界图像,用于模型训练和验证。
综上所述,这个开源项目不仅展示了深度学习在社会事件分析中的潜力,也为研究者和开发者提供了一个有效的工具,以探索如何从海量的社交媒体信息中提取有价值的数据。无论是学术研究还是实际应用,Protest Activity Detection and Perceived Violence Estimation from Social Media Images 都值得你的关注和尝试。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00