CppFlow 项目使用教程
2024-09-13 20:45:20作者:郦嵘贵Just
1. 项目介绍
CppFlow 是一个用于在 C++ 中运行 TensorFlow 模型的开源库。它通过使用 TensorFlow C API,使得用户无需安装 TensorFlow 或编译整个 TensorFlow 仓库,即可在 C++ 环境中执行 TensorFlow 模型。CppFlow 提供了简单易用的接口,支持张量操作、急切执行(eager execution)以及直接从 C++ 运行保存的模型。
2. 项目快速启动
安装
首先,确保你已经下载了 TensorFlow C API。然后,按照以下步骤安装 CppFlow:
git clone https://github.com/serizba/cppflow.git
cd cppflow/examples/load_model
mkdir build
cd build
cmake ..
make -j
make install
快速启动示例
以下是一个简单的示例,展示如何使用 CppFlow 加载并运行一个 TensorFlow 模型:
#include <iostream>
#include <cppflow/cppflow.h>
int main() {
// 加载模型
cppflow::model model("saved_model_folder");
// 加载图像
auto input = cppflow::decode_jpeg(cppflow::read_file(std::string("image.jpg")));
// 将图像转换为浮点数,归一化到 [0, 1] 范围,并添加批次维度
input = cppflow::cast(input, TF_UINT8, TF_FLOAT);
input = input / 255.0f;
input = cppflow::expand_dims(input, 0);
// 运行模型
auto output = model(input);
// 显示预测的类别
std::cout << cppflow::arg_max(output, 1) << std::endl;
return 0;
}
编译并运行该程序:
g++ -std=c++17 -o main main.cpp -ltensorflow
./main
3. 应用案例和最佳实践
应用案例
CppFlow 可以用于各种需要使用 C++ 进行深度学习推理的场景,例如:
- 嵌入式系统:在资源受限的嵌入式设备上运行 TensorFlow 模型。
- 高性能计算:在需要高性能计算的环境中,使用 C++ 进行模型推理。
- 跨平台应用:在不同平台上部署相同的模型推理代码。
最佳实践
- 模型优化:在加载模型之前,确保模型已经过优化(如量化、剪枝等),以提高推理速度。
- 内存管理:使用 CppFlow 提供的张量操作接口,避免手动管理内存,减少内存泄漏的风险。
- 多线程支持:在多线程环境中使用 CppFlow 时,注意线程安全问题,确保模型加载和推理操作在正确的线程上下文中进行。
4. 典型生态项目
CppFlow 可以与其他 TensorFlow 生态项目结合使用,例如:
- TensorFlow Lite:在移动和嵌入式设备上运行轻量级 TensorFlow 模型。
- TensorFlow Serving:用于生产环境中的模型服务,支持高并发推理请求。
- TensorFlow Extended (TFX):用于端到端机器学习管道的构建和部署。
通过结合这些生态项目,CppFlow 可以在更广泛的场景中发挥作用,满足不同应用需求。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
276
暂无简介
Dart
696
163
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
674
仓颉编译器源码及 cjdb 调试工具。
C++
138
869