Qiskit 1.3.0版本中电路优化级别异常问题分析
2025-06-05 16:27:47作者:董灵辛Dennis
问题背景
在量子计算框架Qiskit的最新版本1.3.0rc1和main分支中,用户发现了一个关于电路优化的异常现象。当使用优化级别2和3进行电路编译时,生成的电路深度反而比使用优化级别1时更深。这一现象在1.2.4版本中并不存在,表明这是新版本引入的问题。
问题复现
通过以下简单量子电路可以复现该问题:
from qiskit import generate_preset_pass_manager, QuantumCircuit
qc = QuantumCircuit(2)
qc.cz(0, 1)
qc.sx([0, 1])
qc.cz(0, 1)
for level in [1, 2, 3]:
pm = generate_preset_pass_manager(optimization_level=level, basis_gates=["rz", "rzz", "sx", "x", "rx"])
qc2 = pm.run(qc)
print(f'优化级别 {level} 的电路深度: {qc2.depth()}')
在1.2.4版本中,三个优化级别输出的电路深度相同;而在1.3.0rc1和main分支中,随着优化级别提高,电路深度反而增加。
技术分析
根据核心开发者的调查,这个问题很可能与PR #13141引入的改动有关。当用户仅使用basis_gates参数而不使用Target对象来指定后端约束时,UnitarySynthesis传递无法正确合成电路。
具体问题出现在优化级别3的处理流程中:
- 首先,
BasisTranslator将电路转换为目标基础门集 - 然后,优化阶段运行
ConsolidateBlocks传递,将整个2量子比特电路收集为单个酉矩阵 - 接着,
UnitarySynthesis传递本应处理这个酉矩阵,但实际上什么也没做 - 由于存在未处理的酉门,其他优化传递都无法对电路进行优化
- 最终,在优化循环中检测到基础门集外的门,再次运行基础门转换,导致输出电路未被优化
影响范围
这个问题会影响所有使用以下配置的用户:
- 使用Qiskit 1.3.0rc1或更新版本
- 通过
basis_gates参数而非Target对象指定基础门集 - 使用优化级别2或3进行电路编译
解决方案建议
目前建议的临时解决方案包括:
- 暂时回退到1.2.4版本
- 使用
Target对象而非basis_gates参数来指定后端约束 - 在1.3.0正式版发布前,关注该问题的修复进展
对于开发者而言,修复方向应关注UnitarySynthesis传递在仅使用basis_gates参数时的行为,确保其能正确处理电路合成任务。
总结
这个问题展示了量子电路编译流程中各个优化传递间复杂的相互作用。随着Qiskit功能的不断扩展,保持不同优化级别行为的一致性变得更具挑战性。用户在使用新版本时应注意测试关键电路的编译结果,特别是在升级后检查电路深度和门数量等关键指标。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C089
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.51 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
89
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
283
316
React Native鸿蒙化仓库
JavaScript
286
337
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
437
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
698
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19