Apache Iceberg 使用教程
1. 项目介绍
Apache Iceberg 是一个用于大数据分析的高性能表格式。它为大数据带来了 SQL 表的可靠性和简单性,同时使得 Spark、Trino、Flink、Presto、Hive 和 Impala 等引擎能够安全地同时处理同一张表。Iceberg 的设计目标是提供一种可靠、高效的方式来管理大规模分析数据集,支持灵活的 SQL 命令、模式演进、隐藏分区、时间旅行和回滚等功能。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你已经安装了以下软件:
- Java 8 或更高版本
- Apache Maven 3.6.3 或更高版本
- Apache Spark 3.0.1 或更高版本
2.2 下载并构建项目
首先,克隆 Iceberg 项目到本地:
git clone https://github.com/Netflix/iceberg.git
cd iceberg
然后,使用 Maven 构建项目:
mvn clean install -DskipTests
2.3 配置 Spark 使用 Iceberg
在 Spark 配置文件中添加以下配置:
spark.sql.extensions org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions
spark.sql.catalog.spark_catalog org.apache.iceberg.spark.SparkCatalog
spark.sql.catalog.spark_catalog.type hadoop
spark.sql.catalog.spark_catalog.warehouse /path/to/warehouse
2.4 创建和查询 Iceberg 表
启动 Spark Shell:
spark-shell --packages org.apache.iceberg:iceberg-spark-runtime:0.12.0
在 Spark Shell 中创建一个 Iceberg 表:
import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder().appName("IcebergExample").getOrCreate()
spark.sql("CREATE TABLE iceberg_table (id INT, name STRING) USING iceberg")
spark.sql("INSERT INTO iceberg_table VALUES (1, 'Alice'), (2, 'Bob')")
spark.sql("SELECT * FROM iceberg_table").show()
3. 应用案例和最佳实践
3.1 数据湖中的 Iceberg
Iceberg 非常适合用于数据湖场景,因为它提供了高效的表管理和查询性能。通过 Iceberg,你可以轻松地管理大规模数据集,并支持多种查询引擎的并发访问。
3.2 模式演进
Iceberg 支持灵活的模式演进,允许你添加、删除、重命名和重新排序列,而无需重写整个表。例如:
ALTER TABLE iceberg_table ADD COLUMNS (age INT)
ALTER TABLE iceberg_table RENAME COLUMN name TO full_name
3.3 时间旅行和回滚
Iceberg 支持时间旅行和回滚功能,允许你查询历史版本的表数据或回滚到之前的版本。例如:
SELECT * FROM iceberg_table FOR VERSION AS OF 1234567890
4. 典型生态项目
4.1 Apache Spark
Apache Spark 是 Iceberg 的主要集成引擎之一,支持通过 Spark SQL 进行表管理和查询。
4.2 Apache Flink
Apache Flink 也支持 Iceberg,允许你使用 Flink 的流处理能力来处理 Iceberg 表中的数据。
4.3 Trino
Trino(原 Presto SQL)是一个高性能的分布式 SQL 查询引擎,支持查询 Iceberg 表。
4.4 Apache Hive
Apache Hive 可以通过 Hive Metastore 与 Iceberg 集成,支持 Hive 查询引擎访问 Iceberg 表。
通过这些生态项目的支持,Iceberg 能够在大数据分析领域提供强大的功能和灵活性。
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04