Apache Iceberg 使用教程
1. 项目介绍
Apache Iceberg 是一个用于大数据分析的高性能表格式。它为大数据带来了 SQL 表的可靠性和简单性,同时使得 Spark、Trino、Flink、Presto、Hive 和 Impala 等引擎能够安全地同时处理同一张表。Iceberg 的设计目标是提供一种可靠、高效的方式来管理大规模分析数据集,支持灵活的 SQL 命令、模式演进、隐藏分区、时间旅行和回滚等功能。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你已经安装了以下软件:
- Java 8 或更高版本
- Apache Maven 3.6.3 或更高版本
- Apache Spark 3.0.1 或更高版本
2.2 下载并构建项目
首先,克隆 Iceberg 项目到本地:
git clone https://github.com/Netflix/iceberg.git
cd iceberg
然后,使用 Maven 构建项目:
mvn clean install -DskipTests
2.3 配置 Spark 使用 Iceberg
在 Spark 配置文件中添加以下配置:
spark.sql.extensions org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions
spark.sql.catalog.spark_catalog org.apache.iceberg.spark.SparkCatalog
spark.sql.catalog.spark_catalog.type hadoop
spark.sql.catalog.spark_catalog.warehouse /path/to/warehouse
2.4 创建和查询 Iceberg 表
启动 Spark Shell:
spark-shell --packages org.apache.iceberg:iceberg-spark-runtime:0.12.0
在 Spark Shell 中创建一个 Iceberg 表:
import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder().appName("IcebergExample").getOrCreate()
spark.sql("CREATE TABLE iceberg_table (id INT, name STRING) USING iceberg")
spark.sql("INSERT INTO iceberg_table VALUES (1, 'Alice'), (2, 'Bob')")
spark.sql("SELECT * FROM iceberg_table").show()
3. 应用案例和最佳实践
3.1 数据湖中的 Iceberg
Iceberg 非常适合用于数据湖场景,因为它提供了高效的表管理和查询性能。通过 Iceberg,你可以轻松地管理大规模数据集,并支持多种查询引擎的并发访问。
3.2 模式演进
Iceberg 支持灵活的模式演进,允许你添加、删除、重命名和重新排序列,而无需重写整个表。例如:
ALTER TABLE iceberg_table ADD COLUMNS (age INT)
ALTER TABLE iceberg_table RENAME COLUMN name TO full_name
3.3 时间旅行和回滚
Iceberg 支持时间旅行和回滚功能,允许你查询历史版本的表数据或回滚到之前的版本。例如:
SELECT * FROM iceberg_table FOR VERSION AS OF 1234567890
4. 典型生态项目
4.1 Apache Spark
Apache Spark 是 Iceberg 的主要集成引擎之一,支持通过 Spark SQL 进行表管理和查询。
4.2 Apache Flink
Apache Flink 也支持 Iceberg,允许你使用 Flink 的流处理能力来处理 Iceberg 表中的数据。
4.3 Trino
Trino(原 Presto SQL)是一个高性能的分布式 SQL 查询引擎,支持查询 Iceberg 表。
4.4 Apache Hive
Apache Hive 可以通过 Hive Metastore 与 Iceberg 集成,支持 Hive 查询引擎访问 Iceberg 表。
通过这些生态项目的支持,Iceberg 能够在大数据分析领域提供强大的功能和灵活性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00