Apache Iceberg 使用教程
1. 项目介绍
Apache Iceberg 是一个用于大数据分析的高性能表格式。它为大数据带来了 SQL 表的可靠性和简单性,同时使得 Spark、Trino、Flink、Presto、Hive 和 Impala 等引擎能够安全地同时处理同一张表。Iceberg 的设计目标是提供一种可靠、高效的方式来管理大规模分析数据集,支持灵活的 SQL 命令、模式演进、隐藏分区、时间旅行和回滚等功能。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你已经安装了以下软件:
- Java 8 或更高版本
- Apache Maven 3.6.3 或更高版本
- Apache Spark 3.0.1 或更高版本
2.2 下载并构建项目
首先,克隆 Iceberg 项目到本地:
git clone https://github.com/Netflix/iceberg.git
cd iceberg
然后,使用 Maven 构建项目:
mvn clean install -DskipTests
2.3 配置 Spark 使用 Iceberg
在 Spark 配置文件中添加以下配置:
spark.sql.extensions org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions
spark.sql.catalog.spark_catalog org.apache.iceberg.spark.SparkCatalog
spark.sql.catalog.spark_catalog.type hadoop
spark.sql.catalog.spark_catalog.warehouse /path/to/warehouse
2.4 创建和查询 Iceberg 表
启动 Spark Shell:
spark-shell --packages org.apache.iceberg:iceberg-spark-runtime:0.12.0
在 Spark Shell 中创建一个 Iceberg 表:
import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder().appName("IcebergExample").getOrCreate()
spark.sql("CREATE TABLE iceberg_table (id INT, name STRING) USING iceberg")
spark.sql("INSERT INTO iceberg_table VALUES (1, 'Alice'), (2, 'Bob')")
spark.sql("SELECT * FROM iceberg_table").show()
3. 应用案例和最佳实践
3.1 数据湖中的 Iceberg
Iceberg 非常适合用于数据湖场景,因为它提供了高效的表管理和查询性能。通过 Iceberg,你可以轻松地管理大规模数据集,并支持多种查询引擎的并发访问。
3.2 模式演进
Iceberg 支持灵活的模式演进,允许你添加、删除、重命名和重新排序列,而无需重写整个表。例如:
ALTER TABLE iceberg_table ADD COLUMNS (age INT)
ALTER TABLE iceberg_table RENAME COLUMN name TO full_name
3.3 时间旅行和回滚
Iceberg 支持时间旅行和回滚功能,允许你查询历史版本的表数据或回滚到之前的版本。例如:
SELECT * FROM iceberg_table FOR VERSION AS OF 1234567890
4. 典型生态项目
4.1 Apache Spark
Apache Spark 是 Iceberg 的主要集成引擎之一,支持通过 Spark SQL 进行表管理和查询。
4.2 Apache Flink
Apache Flink 也支持 Iceberg,允许你使用 Flink 的流处理能力来处理 Iceberg 表中的数据。
4.3 Trino
Trino(原 Presto SQL)是一个高性能的分布式 SQL 查询引擎,支持查询 Iceberg 表。
4.4 Apache Hive
Apache Hive 可以通过 Hive Metastore 与 Iceberg 集成,支持 Hive 查询引擎访问 Iceberg 表。
通过这些生态项目的支持,Iceberg 能够在大数据分析领域提供强大的功能和灵活性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C067
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00