Apache Iceberg 使用教程
1. 项目介绍
Apache Iceberg 是一个用于大数据分析的高性能表格式。它为大数据带来了 SQL 表的可靠性和简单性,同时使得 Spark、Trino、Flink、Presto、Hive 和 Impala 等引擎能够安全地同时处理同一张表。Iceberg 的设计目标是提供一种可靠、高效的方式来管理大规模分析数据集,支持灵活的 SQL 命令、模式演进、隐藏分区、时间旅行和回滚等功能。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你已经安装了以下软件:
- Java 8 或更高版本
- Apache Maven 3.6.3 或更高版本
- Apache Spark 3.0.1 或更高版本
2.2 下载并构建项目
首先,克隆 Iceberg 项目到本地:
git clone https://github.com/Netflix/iceberg.git
cd iceberg
然后,使用 Maven 构建项目:
mvn clean install -DskipTests
2.3 配置 Spark 使用 Iceberg
在 Spark 配置文件中添加以下配置:
spark.sql.extensions org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions
spark.sql.catalog.spark_catalog org.apache.iceberg.spark.SparkCatalog
spark.sql.catalog.spark_catalog.type hadoop
spark.sql.catalog.spark_catalog.warehouse /path/to/warehouse
2.4 创建和查询 Iceberg 表
启动 Spark Shell:
spark-shell --packages org.apache.iceberg:iceberg-spark-runtime:0.12.0
在 Spark Shell 中创建一个 Iceberg 表:
import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder().appName("IcebergExample").getOrCreate()
spark.sql("CREATE TABLE iceberg_table (id INT, name STRING) USING iceberg")
spark.sql("INSERT INTO iceberg_table VALUES (1, 'Alice'), (2, 'Bob')")
spark.sql("SELECT * FROM iceberg_table").show()
3. 应用案例和最佳实践
3.1 数据湖中的 Iceberg
Iceberg 非常适合用于数据湖场景,因为它提供了高效的表管理和查询性能。通过 Iceberg,你可以轻松地管理大规模数据集,并支持多种查询引擎的并发访问。
3.2 模式演进
Iceberg 支持灵活的模式演进,允许你添加、删除、重命名和重新排序列,而无需重写整个表。例如:
ALTER TABLE iceberg_table ADD COLUMNS (age INT)
ALTER TABLE iceberg_table RENAME COLUMN name TO full_name
3.3 时间旅行和回滚
Iceberg 支持时间旅行和回滚功能,允许你查询历史版本的表数据或回滚到之前的版本。例如:
SELECT * FROM iceberg_table FOR VERSION AS OF 1234567890
4. 典型生态项目
4.1 Apache Spark
Apache Spark 是 Iceberg 的主要集成引擎之一,支持通过 Spark SQL 进行表管理和查询。
4.2 Apache Flink
Apache Flink 也支持 Iceberg,允许你使用 Flink 的流处理能力来处理 Iceberg 表中的数据。
4.3 Trino
Trino(原 Presto SQL)是一个高性能的分布式 SQL 查询引擎,支持查询 Iceberg 表。
4.4 Apache Hive
Apache Hive 可以通过 Hive Metastore 与 Iceberg 集成,支持 Hive 查询引擎访问 Iceberg 表。
通过这些生态项目的支持,Iceberg 能够在大数据分析领域提供强大的功能和灵活性。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00