Microsoft.Extensions.AI 中为追踪和度量添加终端用户标识的最佳实践
2025-06-28 17:47:03作者:温玫谨Lighthearted
在现代人工智能应用开发中,跟踪生成式AI服务的调用情况对于系统监控和运营分析至关重要。Microsoft.Extensions.AI库作为.NET生态中集成AI服务的重要组件,其提供的遥测功能可以帮助开发者深入了解AI服务的使用情况。
用户标识追踪的重要性
在实际生产环境中,我们经常需要将AI服务的调用与特定终端用户关联起来。这种关联能够带来多重价值:
- 使用量分析:精确计算每个用户消耗的token数量
- 配额管理:基于用户实施细粒度的速率限制
- 异常检测:识别特定用户的异常使用模式
- 成本分摊:准确计算AI服务使用成本并分摊到具体用户
当前实现方案分析
Microsoft.Extensions.AI库通过OpenTelemetryChatClient提供了基本的遥测功能,但默认情况下并未将ChatOptions中的AdditionalProperties自动转换为追踪标签或度量维度。这导致开发者需要自行实现用户标识的注入逻辑。
推荐的解决方案实现
目前最实用的解决方案是创建一个装饰器模式的ChatClient实现,在调用前后注入用户标识信息。以下是一个典型实现示例:
class UserIdChatClient : DelegatingChatClient
{
public UserIdChatClient(IChatClient client) : base(client) { }
public override Task<ChatCompletion> CompleteAsync(
IList<ChatMessage> chatMessages,
ChatOptions? options = null,
CancellationToken cancellationToken = default)
{
if (Activity.Current is { } activity &&
options?.AdditionalProperties?.TryGetValue("EndUserId", out var endUserId) == true)
{
activity.SetTag("user.id", endUserId);
}
return base.CompleteAsync(chatMessages, options, cancellationToken);
}
// 同样实现流式调用的方法
}
使用时需要确保该装饰器在管道中的正确位置:
services.AddChatClient(builder => builder
.UseOpenTelemetry()
.Use(client => new UserIdChatClient(client))
.Use(new OpenAIClient(...));
技术实现要点
- 装饰器模式:通过继承DelegatingChatClient保持原有功能不变
- Activity.Current访问:利用.NET的Activity机制获取当前追踪上下文
- 线程安全考虑:确保在多线程环境下正确访问Activity.Current
- 性能影响:额外的方法调用和条件判断对性能影响极小
未来改进方向
虽然当前解决方案可行,但从长远来看,Microsoft.Extensions.AI库可以考虑以下增强:
- 自动标签转换:将ChatOptions.AdditionalProperties中的值自动转为追踪标签
- 度量维度支持:将用户标识同时添加到度量数据中
- 配置开关:提供类似EnableSensitiveData的配置选项控制此行为
- 标准化字段:为常用的用户标识字段提供标准化的处理方式
总结
通过自定义ChatClient装饰器实现用户标识注入是目前最可靠的解决方案。这种模式不仅解决了当前需求,也为未来可能的库功能增强提供了平滑过渡的路径。开发者可以根据实际需求扩展此模式,添加更多业务相关的遥测维度。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
425
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
264
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
19
30