Microsoft.Extensions.AI 中为追踪和度量添加终端用户标识的最佳实践
2025-06-28 19:04:11作者:温玫谨Lighthearted
在现代人工智能应用开发中,跟踪生成式AI服务的调用情况对于系统监控和运营分析至关重要。Microsoft.Extensions.AI库作为.NET生态中集成AI服务的重要组件,其提供的遥测功能可以帮助开发者深入了解AI服务的使用情况。
用户标识追踪的重要性
在实际生产环境中,我们经常需要将AI服务的调用与特定终端用户关联起来。这种关联能够带来多重价值:
- 使用量分析:精确计算每个用户消耗的token数量
- 配额管理:基于用户实施细粒度的速率限制
- 异常检测:识别特定用户的异常使用模式
- 成本分摊:准确计算AI服务使用成本并分摊到具体用户
当前实现方案分析
Microsoft.Extensions.AI库通过OpenTelemetryChatClient提供了基本的遥测功能,但默认情况下并未将ChatOptions中的AdditionalProperties自动转换为追踪标签或度量维度。这导致开发者需要自行实现用户标识的注入逻辑。
推荐的解决方案实现
目前最实用的解决方案是创建一个装饰器模式的ChatClient实现,在调用前后注入用户标识信息。以下是一个典型实现示例:
class UserIdChatClient : DelegatingChatClient
{
public UserIdChatClient(IChatClient client) : base(client) { }
public override Task<ChatCompletion> CompleteAsync(
IList<ChatMessage> chatMessages,
ChatOptions? options = null,
CancellationToken cancellationToken = default)
{
if (Activity.Current is { } activity &&
options?.AdditionalProperties?.TryGetValue("EndUserId", out var endUserId) == true)
{
activity.SetTag("user.id", endUserId);
}
return base.CompleteAsync(chatMessages, options, cancellationToken);
}
// 同样实现流式调用的方法
}
使用时需要确保该装饰器在管道中的正确位置:
services.AddChatClient(builder => builder
.UseOpenTelemetry()
.Use(client => new UserIdChatClient(client))
.Use(new OpenAIClient(...));
技术实现要点
- 装饰器模式:通过继承DelegatingChatClient保持原有功能不变
- Activity.Current访问:利用.NET的Activity机制获取当前追踪上下文
- 线程安全考虑:确保在多线程环境下正确访问Activity.Current
- 性能影响:额外的方法调用和条件判断对性能影响极小
未来改进方向
虽然当前解决方案可行,但从长远来看,Microsoft.Extensions.AI库可以考虑以下增强:
- 自动标签转换:将ChatOptions.AdditionalProperties中的值自动转为追踪标签
- 度量维度支持:将用户标识同时添加到度量数据中
- 配置开关:提供类似EnableSensitiveData的配置选项控制此行为
- 标准化字段:为常用的用户标识字段提供标准化的处理方式
总结
通过自定义ChatClient装饰器实现用户标识注入是目前最可靠的解决方案。这种模式不仅解决了当前需求,也为未来可能的库功能增强提供了平滑过渡的路径。开发者可以根据实际需求扩展此模式,添加更多业务相关的遥测维度。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
754
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248