Kubernetes GPU 指南
2024-09-01 12:49:50作者:邓越浪Henry
项目介绍
Kubernetes GPU 指南是一个开源项目,旨在帮助用户在 Kubernetes 集群中运行需要 GPU 访问的 Docker 容器。该项目特别关注于使用 TensorFlow GPU 二进制文件,并能够在 Jupyter 笔记本中运行 TensorFlow 程序。该项目适用于 Kubernetes 1.6 版本,但需要注意,随着 Kubernetes 的更新,部分内容可能需要调整。
项目快速启动
环境准备
确保你的机器上已经安装了以下软件:
- Kubernetes 1.6
- Docker
- Nvidia 驱动和 CUDA 库
配置 Kubernetes 集群
-
添加 Kubernetes 仓库到包管理器
sudo su - apt-get update && apt-get install -y apt-transport-https curl curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add - cat <<EOF >/etc/apt/sources.list.d/kubernetes.list deb http://apt.kubernetes.io/ kubernetes-xenial main EOF apt-get update exit
-
安装 docker-engine 和 Kubernetes 组件
sudo apt-get install -y docker-engine sudo apt-get install -y kubelet kubeadm kubectl kubernetes-cni sudo groupadd docker sudo usermod -aG docker $USER echo 'You might need to reboot / relogin to make docker work correctly'
-
初始化 Kubernetes 主节点
sudo kubeadm init
-
配置 GPU 支持
volumes: - hostPath: path: /usr/lib/nvidia-375/bin name: bin - hostPath: path: /usr/lib/nvidia-375 name: lib volumeMounts: - mountPath: /usr/local/nvidia/bin name: bin - mountPath: /usr/local/nvidia/lib name: lib resources: limits: alpha.kubernetes.io/nvidia-gpu: 1
部署示例 GPU 应用
-
创建 deployment 文件
apiVersion: apps/v1 kind: Deployment metadata: name: example-gpu-deployment spec: replicas: 1 selector: matchLabels: app: example-gpu template: metadata: labels: app: example-gpu spec: containers: - name: example-gpu image: tensorflow/tensorflow:latest-gpu resources: limits: alpha.kubernetes.io/nvidia-gpu: 1 volumeMounts: - mountPath: /usr/local/nvidia/bin name: bin - mountPath: /usr/local/nvidia/lib name: lib volumes: - hostPath: path: /usr/lib/nvidia-375/bin name: bin - hostPath: path: /usr/lib/nvidia-375 name: lib
-
应用 deployment 文件
kubectl apply -f example-gpu-deployment.yaml
应用案例和最佳实践
案例一:深度学习训练
使用 Kubernetes GPU 集群进行深度学习训练,可以显著提高训练速度和效率。通过自动化脚本和 YAML 文件,可以轻松设置和管理 GPU 集群。
最佳实践
- 资源管理:合理分配 GPU 资源,避免资源浪费。
- 监控和日志:实时监控集群状态,并记录日志以便故障排查。
- 持续集成/持续部署(CI/CD):集成 CI/CD 流程,自动化部署和测试。
典型生态项目
TensorFlow
TensorFlow 是一个广泛使用的开源机器学习框架,支持 GPU 加速,与 Kubernetes 结合可以实现高效的分布式训练。
Jupyter Notebook
Jupyter Notebook 提供了一个交互式的编程环境,非常适合进行数据分析和机器学习实验。通过 Kubernetes 部署 Jupyter Notebook,可以实现远程
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8