Kubernetes GPU 指南
2024-09-01 06:30:34作者:邓越浪Henry
项目介绍
Kubernetes GPU 指南是一个开源项目,旨在帮助用户在 Kubernetes 集群中运行需要 GPU 访问的 Docker 容器。该项目特别关注于使用 TensorFlow GPU 二进制文件,并能够在 Jupyter 笔记本中运行 TensorFlow 程序。该项目适用于 Kubernetes 1.6 版本,但需要注意,随着 Kubernetes 的更新,部分内容可能需要调整。
项目快速启动
环境准备
确保你的机器上已经安装了以下软件:
- Kubernetes 1.6
- Docker
- Nvidia 驱动和 CUDA 库
配置 Kubernetes 集群
-
添加 Kubernetes 仓库到包管理器
sudo su - apt-get update && apt-get install -y apt-transport-https curl curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add - cat <<EOF >/etc/apt/sources.list.d/kubernetes.list deb http://apt.kubernetes.io/ kubernetes-xenial main EOF apt-get update exit -
安装 docker-engine 和 Kubernetes 组件
sudo apt-get install -y docker-engine sudo apt-get install -y kubelet kubeadm kubectl kubernetes-cni sudo groupadd docker sudo usermod -aG docker $USER echo 'You might need to reboot / relogin to make docker work correctly' -
初始化 Kubernetes 主节点
sudo kubeadm init -
配置 GPU 支持
volumes: - hostPath: path: /usr/lib/nvidia-375/bin name: bin - hostPath: path: /usr/lib/nvidia-375 name: lib volumeMounts: - mountPath: /usr/local/nvidia/bin name: bin - mountPath: /usr/local/nvidia/lib name: lib resources: limits: alpha.kubernetes.io/nvidia-gpu: 1
部署示例 GPU 应用
-
创建 deployment 文件
apiVersion: apps/v1 kind: Deployment metadata: name: example-gpu-deployment spec: replicas: 1 selector: matchLabels: app: example-gpu template: metadata: labels: app: example-gpu spec: containers: - name: example-gpu image: tensorflow/tensorflow:latest-gpu resources: limits: alpha.kubernetes.io/nvidia-gpu: 1 volumeMounts: - mountPath: /usr/local/nvidia/bin name: bin - mountPath: /usr/local/nvidia/lib name: lib volumes: - hostPath: path: /usr/lib/nvidia-375/bin name: bin - hostPath: path: /usr/lib/nvidia-375 name: lib -
应用 deployment 文件
kubectl apply -f example-gpu-deployment.yaml
应用案例和最佳实践
案例一:深度学习训练
使用 Kubernetes GPU 集群进行深度学习训练,可以显著提高训练速度和效率。通过自动化脚本和 YAML 文件,可以轻松设置和管理 GPU 集群。
最佳实践
- 资源管理:合理分配 GPU 资源,避免资源浪费。
- 监控和日志:实时监控集群状态,并记录日志以便故障排查。
- 持续集成/持续部署(CI/CD):集成 CI/CD 流程,自动化部署和测试。
典型生态项目
TensorFlow
TensorFlow 是一个广泛使用的开源机器学习框架,支持 GPU 加速,与 Kubernetes 结合可以实现高效的分布式训练。
Jupyter Notebook
Jupyter Notebook 提供了一个交互式的编程环境,非常适合进行数据分析和机器学习实验。通过 Kubernetes 部署 Jupyter Notebook,可以实现远程
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
81
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1