Kubernetes GPU 指南
2024-09-01 11:56:46作者:邓越浪Henry
项目介绍
Kubernetes GPU 指南是一个开源项目,旨在帮助用户在 Kubernetes 集群中运行需要 GPU 访问的 Docker 容器。该项目特别关注于使用 TensorFlow GPU 二进制文件,并能够在 Jupyter 笔记本中运行 TensorFlow 程序。该项目适用于 Kubernetes 1.6 版本,但需要注意,随着 Kubernetes 的更新,部分内容可能需要调整。
项目快速启动
环境准备
确保你的机器上已经安装了以下软件:
- Kubernetes 1.6
- Docker
- Nvidia 驱动和 CUDA 库
配置 Kubernetes 集群
-
添加 Kubernetes 仓库到包管理器
sudo su - apt-get update && apt-get install -y apt-transport-https curl curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add - cat <<EOF >/etc/apt/sources.list.d/kubernetes.list deb http://apt.kubernetes.io/ kubernetes-xenial main EOF apt-get update exit
-
安装 docker-engine 和 Kubernetes 组件
sudo apt-get install -y docker-engine sudo apt-get install -y kubelet kubeadm kubectl kubernetes-cni sudo groupadd docker sudo usermod -aG docker $USER echo 'You might need to reboot / relogin to make docker work correctly'
-
初始化 Kubernetes 主节点
sudo kubeadm init
-
配置 GPU 支持
volumes: - hostPath: path: /usr/lib/nvidia-375/bin name: bin - hostPath: path: /usr/lib/nvidia-375 name: lib volumeMounts: - mountPath: /usr/local/nvidia/bin name: bin - mountPath: /usr/local/nvidia/lib name: lib resources: limits: alpha.kubernetes.io/nvidia-gpu: 1
部署示例 GPU 应用
-
创建 deployment 文件
apiVersion: apps/v1 kind: Deployment metadata: name: example-gpu-deployment spec: replicas: 1 selector: matchLabels: app: example-gpu template: metadata: labels: app: example-gpu spec: containers: - name: example-gpu image: tensorflow/tensorflow:latest-gpu resources: limits: alpha.kubernetes.io/nvidia-gpu: 1 volumeMounts: - mountPath: /usr/local/nvidia/bin name: bin - mountPath: /usr/local/nvidia/lib name: lib volumes: - hostPath: path: /usr/lib/nvidia-375/bin name: bin - hostPath: path: /usr/lib/nvidia-375 name: lib
-
应用 deployment 文件
kubectl apply -f example-gpu-deployment.yaml
应用案例和最佳实践
案例一:深度学习训练
使用 Kubernetes GPU 集群进行深度学习训练,可以显著提高训练速度和效率。通过自动化脚本和 YAML 文件,可以轻松设置和管理 GPU 集群。
最佳实践
- 资源管理:合理分配 GPU 资源,避免资源浪费。
- 监控和日志:实时监控集群状态,并记录日志以便故障排查。
- 持续集成/持续部署(CI/CD):集成 CI/CD 流程,自动化部署和测试。
典型生态项目
TensorFlow
TensorFlow 是一个广泛使用的开源机器学习框架,支持 GPU 加速,与 Kubernetes 结合可以实现高效的分布式训练。
Jupyter Notebook
Jupyter Notebook 提供了一个交互式的编程环境,非常适合进行数据分析和机器学习实验。通过 Kubernetes 部署 Jupyter Notebook,可以实现远程
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
824
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
markdown4cj
一个markdown解析和展示的库
Cangjie
10
0