SimpleRL-Zoo项目中Qwen-2.5-7B模型的训练细节解析
在开源项目SimpleRL-Zoo中,研究人员基于Qwen-2.5-7B大语言模型开发了强化学习训练版本Qwen-2.5-7B-SimpleRL-Zoo。本文将从技术角度深入解析该模型的训练过程与关键参数设置。
训练硬件配置与基本参数
该项目采用了2台配备8块H100-80G GPU的服务器进行训练。对于7B和14B参数规模的模型,研究人员进行了约100次rollout的训练过程,耗时约15小时。训练数据使用了8532个示例样本,这些数据来自simplelr_qwen_level3to5数据集。
训练过程详解
在强化学习训练过程中,每个训练步骤(step)会并行处理1024个提示(prompt)。对于每个提示,模型会生成8个不同的响应(response),这一参数由--rollout_n 8指定。在获得这些响应后,系统会计算相应的奖励(reward)并更新策略。
根据计算,8532个样本的数据集在1024的批次大小下,每个epoch大约需要8.33次rollout。因此,100次rollout的训练相当于约12个完整epoch。值得注意的是,由于每个提示生成了8个响应,模型实际上对每个训练样本进行了约96次(8×12)的"观察"。
数据集组成
训练使用的simplelr_qwen_level3to5数据集包含8532个训练样本。此外,研究人员还准备了500个问题作为测试集(MATH500),以及另外500个均匀采样的问题作为验证集。需要注意的是,公开的数据集中仅包含训练集和测试集,验证集未包含在发布的数据中。
模型发布版本
最终发布的Qwen-2.5-7B-SimpleRL-Zoo模型是基于90次rollout训练得到的版本。这个训练量略低于最初计划的100次rollout,但已经能够展现出显著的性能提升。
技术要点总结
- 采用大规模并行训练策略,每个step处理1024个prompt
- 每个prompt生成多个响应(8个)以增强策略学习
- 总训练量约12个epoch,模型对每个样本进行了约96次"观察"
- 使用独立验证集和测试集进行模型评估
- 最终发布模型基于90次rollout训练结果
这种训练配置在保证训练效率的同时,通过多响应生成策略有效提升了模型在数学推理任务上的表现。对于希望复现或改进该工作的研究者,理解这些训练细节至关重要。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0331- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









