streamlit-jupyter 的项目扩展与二次开发
1. 项目的基础介绍
streamlit-jupyter 是一个开源项目,旨在将 Streamlit 的交互式应用开发能力与 Jupyter Notebook 的数据处理能力结合起来。该项目允许用户在 Jupyter Notebook 中直接使用 Streamlit 的组件,实现了两种工具的深度整合,极大地提升了数据科学家和开发者的工作效率。
2. 项目的核心功能
项目的核心功能是使得用户能够在 Jupyter Notebook 环境中无缝地使用 Streamlit 组件。具体来说,用户可以在 Jupyter Notebook 中导入 streamlit-jupyter 提供的接口,然后通过简单的函数调用来创建 Streamlit 应用的界面元素,如按钮、文本框、图表等,并且可以直接在 Notebook 中预览这些应用。
3. 项目使用了哪些框架或库?
streamlit-jupyter 项目主要使用了以下框架或库:
- Streamlit:用于构建数据应用的框架。
- Jupyter Notebook:一个开放源代码的 Web 应用程序,允许你创建和共享包含实时代码、方程、可视化和解释性文本的文档。
- IPython:一个强大的交互式 shell,用于执行 Python 代码。
4. 项目的代码目录及介绍
项目的代码目录结构大致如下:
streamlit_jupyter/
├── examples/ # 包含示例代码
├── ipynb_ext/ # Jupyter Notebook 扩展相关代码
│ ├── __init__.py
│ └── streamlit_kernel.py # 核心文件,实现了 Streamlit 组件与 Jupyter 的整合
├── tests/ # 单元测试和集成测试代码
│ ├── __init__.py
└── setup.py # 项目安装和打包配置文件
项目的核心文件streamlit_kernel.py实现了streamlit与jupyter的内核通信。它允许你创建一个Streamlit的内核,然后在Jupyter中执行Streamlit的应用。它使用Jupyter的交互式小部件来展示Streamlit应用程序的输出。
5. 对项目进行扩展或者二次开发的方向
-
增加新的 Streamlit 组件支持:目前的streamlit_jupyter目前支持Streamlit的许多组件可能还无法直接在Jupyter中调用。可以扩展streamlit_jupyter项目,增加对更多组件的支持,使得用户能够更多的Streamlit组件可以在Jupyter中直接使用。
-
性能优化:优化代码的执行性能,减少内存占用,提高执行速度。确保streamlit-jupyter允许用户可以扩展此项目,增加对更多的Streamlit组件的支持,以及优化执行性能。
-
扩展自定义组件支持:目前streamlit-jupyter暂不支持用户自定义组件。可以通过扩展项目来增加对自定义组件的支持,允许用户在Jupyter中直接使用这些自定义组件。这样用户就可以在Jupyter中创建更复杂和丰富的交互式应用程序。
-
集成其他工具和框架:可以扩展streamlit-jupyter,整合其他的数据处理和分析工具和框架,例如:可以整合机器学习框架,如:scikit-learn,TensorFlow或PyTorch等,允许用户在Jupyter中直接进行模型训练和部署。也可以整合数据可视化工具和框架,如:Matplotlib或Seaborn等。这样用户在Jupyter中除了可以创建交互式应用程序,还可以对数据进行分析和可视化。这对于数据科学家和工程师来说是一个很大的便利。因为它可以减少在Jupyter中直接使用Streamlit组件的同时,还能进行数据预处理和可视化。进一步提高开发效率。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00