SuperPointPretrainedNetwork 项目使用教程
2024-10-10 23:55:55作者:凤尚柏Louis
1. 项目目录结构及介绍
SuperPointPretrainedNetwork/
├── assets/
│ ├── icl_snippet/
│ ├── nyu_snippet.mp4
│ └── README.md
├── LICENSE
├── README.md
├── demo_superpoint.py
└── superpoint_v1.pth
目录结构说明
-
assets/: 包含项目所需的资源文件,如图像序列和视频文件。
- icl_snippet/: 包含用于演示的图像序列。
- nyu_snippet.mp4: 用于演示的视频文件。
- README.md: 资源文件的说明文档。
-
LICENSE: 项目的开源许可证文件。
-
README.md: 项目的说明文档,包含项目的介绍、使用方法和依赖项等信息。
-
demo_superpoint.py: 项目的启动文件,用于运行SuperPoint网络的演示脚本。
-
superpoint_v1.pth: 预训练的SuperPoint网络权重文件。
2. 项目的启动文件介绍
demo_superpoint.py
demo_superpoint.py 是项目的启动文件,用于运行SuperPoint网络的演示脚本。该脚本的主要功能包括:
- 加载图像序列或视频文件: 支持从目录、视频文件或USB摄像头加载输入数据。
- 运行SuperPoint网络: 使用预训练的SuperPoint网络检测兴趣点并计算其描述符。
- 生成稀疏光流可视化: 通过匹配连续帧中的兴趣点,生成稀疏光流的可视化结果。
使用方法
# 在CPU模式下运行演示脚本,处理提供的图像序列
python demo_superpoint.py assets/icl_snippet/
# 在GPU模式下运行演示脚本,处理提供的视频文件
python demo_superpoint.py assets/nyu_snippet.mp4 --cuda
# 通过摄像头(id #1)在CPU模式下运行实时演示
python demo_superpoint.py camera --camid=1
3. 项目的配置文件介绍
README.md
README.md 文件是项目的配置文件之一,包含了项目的详细介绍、使用方法、依赖项和运行演示脚本的命令等信息。通过阅读该文件,用户可以快速了解项目的基本情况并开始使用。
依赖项
项目依赖于以下Python库:
- OpenCV: 用于图像处理和视频流处理。
- PyTorch: 用于加载和运行预训练的SuperPoint网络。
可以通过以下命令安装这些依赖项:
pip install opencv-python
pip install torch
其他配置参数
在运行演示脚本时,可以通过命令行参数调整以下配置:
--H: 输入图像的高度(默认:120)。--W: 输入图像的宽度(默认:160)。--display_scale: 输出可视化图像的高度和宽度缩放比例(默认:2)。--cuda: 启用GPU加速。--img_glob: 图像文件扩展名(默认:*.png)。--min_length: 最小跟踪长度(默认:2)。--max_length: 最大跟踪长度(默认:5)。--conf_thresh: 兴趣点置信度阈值(默认:0.015)。--nn_thresh: 描述符匹配距离阈值(默认:0.7)。--show_extra: 显示更多计算机视觉输出。
通过调整这些参数,用户可以根据具体需求定制演示脚本的运行方式。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
275
暂无简介
Dart
696
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869