SuperPointPretrainedNetwork 项目使用教程
2024-10-10 23:31:49作者:凤尚柏Louis
1. 项目目录结构及介绍
SuperPointPretrainedNetwork/
├── assets/
│ ├── icl_snippet/
│ ├── nyu_snippet.mp4
│ └── README.md
├── LICENSE
├── README.md
├── demo_superpoint.py
└── superpoint_v1.pth
目录结构说明
-
assets/: 包含项目所需的资源文件,如图像序列和视频文件。
- icl_snippet/: 包含用于演示的图像序列。
- nyu_snippet.mp4: 用于演示的视频文件。
- README.md: 资源文件的说明文档。
-
LICENSE: 项目的开源许可证文件。
-
README.md: 项目的说明文档,包含项目的介绍、使用方法和依赖项等信息。
-
demo_superpoint.py: 项目的启动文件,用于运行SuperPoint网络的演示脚本。
-
superpoint_v1.pth: 预训练的SuperPoint网络权重文件。
2. 项目的启动文件介绍
demo_superpoint.py
demo_superpoint.py 是项目的启动文件,用于运行SuperPoint网络的演示脚本。该脚本的主要功能包括:
- 加载图像序列或视频文件: 支持从目录、视频文件或USB摄像头加载输入数据。
- 运行SuperPoint网络: 使用预训练的SuperPoint网络检测兴趣点并计算其描述符。
- 生成稀疏光流可视化: 通过匹配连续帧中的兴趣点,生成稀疏光流的可视化结果。
使用方法
# 在CPU模式下运行演示脚本,处理提供的图像序列
python demo_superpoint.py assets/icl_snippet/
# 在GPU模式下运行演示脚本,处理提供的视频文件
python demo_superpoint.py assets/nyu_snippet.mp4 --cuda
# 通过摄像头(id #1)在CPU模式下运行实时演示
python demo_superpoint.py camera --camid=1
3. 项目的配置文件介绍
README.md
README.md 文件是项目的配置文件之一,包含了项目的详细介绍、使用方法、依赖项和运行演示脚本的命令等信息。通过阅读该文件,用户可以快速了解项目的基本情况并开始使用。
依赖项
项目依赖于以下Python库:
- OpenCV: 用于图像处理和视频流处理。
- PyTorch: 用于加载和运行预训练的SuperPoint网络。
可以通过以下命令安装这些依赖项:
pip install opencv-python
pip install torch
其他配置参数
在运行演示脚本时,可以通过命令行参数调整以下配置:
--H: 输入图像的高度(默认:120)。--W: 输入图像的宽度(默认:160)。--display_scale: 输出可视化图像的高度和宽度缩放比例(默认:2)。--cuda: 启用GPU加速。--img_glob: 图像文件扩展名(默认:*.png)。--min_length: 最小跟踪长度(默认:2)。--max_length: 最大跟踪长度(默认:5)。--conf_thresh: 兴趣点置信度阈值(默认:0.015)。--nn_thresh: 描述符匹配距离阈值(默认:0.7)。--show_extra: 显示更多计算机视觉输出。
通过调整这些参数,用户可以根据具体需求定制演示脚本的运行方式。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
316
2.74 K
仓颉编译器源码及 cjdb 调试工具。
C++
124
852
Ascend Extension for PyTorch
Python
155
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
639
246
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
241
85
暂无简介
Dart
606
136
React Native鸿蒙化仓库
JavaScript
239
310
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
470
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
364
3.02 K