AIMET模型导出文件选择指南:正确使用encodings文件
2025-07-02 16:05:52作者:温艾琴Wonderful
概述
在使用AIMET工具进行模型量化时,导出过程会生成多个文件,其中包括两个encodings文件和一个临时ONNX文件。许多开发者在将这些模型部署到AI Hub时,常常会遇到文件选择困惑。本文将详细介绍这些文件的用途及正确的使用方法。
AIMET导出文件结构解析
当使用AIMET导出量化模型时,典型的输出目录包含以下文件:
mymodel.onnx
- 主要的模型文件,包含量化后的模型结构mymodel.encodings
- 量化编码文件(推荐使用)mymodel_torch.encodings
- PyTorch格式的量化编码文件mymodel.pth
- PyTorch模型权重文件temp_onnx_model_with_all_markers.onnx
- 临时生成的ONNX文件(可删除)
关键文件选择原则
对于AI Hub的模型编译,需要特别注意以下几点:
-
encodings文件选择:AI Hub要求目录中只能包含一个.encodings文件。在大多数情况下,应保留
mymodel.encodings
文件,删除mymodel_torch.encodings
文件。 -
ONNX文件处理:目录中应该只保留主要的ONNX模型文件(如
mymodel.onnx
),可以安全删除临时生成的temp_onnx_model_with_all_markers.onnx
文件。 -
其他文件:
.pth
文件通常不需要用于AI Hub的模型部署,可以移除。
最佳实践建议
-
在导出模型后,建议创建一个新的干净目录,只复制必要的文件:
- 主ONNX模型文件
- 选择的encodings文件
- 其他必要的配置文件
-
对于PyTorch模型,如果确实需要使用
mymodel_torch.encodings
,应确保目录中不包含其他encodings文件,以避免冲突。 -
在提交编译任务前,建议使用简单的目录结构检查命令确认文件数量:
ls -1 mydir.aimet/*.encodings | wc -l
常见问题解决方案
如果遇到AI Hub报错"AIMET model directory must contain exactly one .encodings file",可以按照以下步骤解决:
- 检查目录中的encodings文件数量
- 保留最适合目标平台的encodings文件(通常是非_torch后缀的文件)
- 删除多余的encodings文件和临时文件
- 重新提交编译任务
通过遵循这些指南,开发者可以避免常见的文件选择错误,确保AIMET量化模型能够顺利在AI Hub上编译和部署。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K