Soccer On Your Tabletop - 将YouTube足球视频转化为3D视图教程
项目介绍
"Soccer On Your Tabletop" 是一个开源项目,旨在将YouTube上的足球比赛视频转换成适用于增强现实(AR)和虚拟现实(VR)设备的3D模型。该系统通过复杂的计算机视觉技术,包括对象检测、分割、姿态估计及深度学习,从单目视频中重建出球员和场地的动态3D重建。这项工作由Konstantinos Rematas等人在CVPR 2018上发表。
项目快速启动
环境准备
首先,确保你的开发环境已经安装了必要的工具和库。你需要Python 3以及一系列依赖项,可以通过以下命令安装基本Python依赖:
git clone https://github.com/krematas/soccerontable.git
cd soccerontable
pip3 install -r requirements.txt
除了上述步骤,还需要安装特定的非pip包,如Detectron (Python 2版本),OpenPose,OpenCV,Eigen3,CocoAPI等,并遵循相应的安装指南。
运行示例
-
下载示例数据集并解压:
wget http://grail.cs.washington.edu/projects/soccer/barcelona.zip unzip barcelona.zip -
使用Detectron获取检测框和分割掩模:
mkdir barcelona/detectron # 需要先配置Detectron到指定路径,并调整下方命令中的路径 python2 path_to_detectron/tools/infer_subimages.py --cfg ... --wts ... -
接下来的步骤涉及相机校准、玩家姿态估计、玩家分割和深度估计等,每个环节都有详细的脚本在
demo目录下,需要依次执行。
注意
- 安装Detectron和OpenPose可能需要针对特定平台进行设置。
- 确保所有依赖已正确配置,特别是Python2和Python3兼容性问题需特别注意。
应用案例和最佳实践
该项目最佳应用于足球赛事的AR展示,能够将比赛视频中的场景立体化,让用户能够在AR或VR设备中体验仿佛球员就在桌面上踢球的感觉。开发者可以利用此框架来创作交互式体育回放分析软件,或者为粉丝提供沉浸式的观赛体验。
典型生态项目
虽然直接关联的“典型生态项目”信息未直接提供,但类似的项目和技术可以应用于广泛的体育视频分析、实时运动捕捉、以及教育和娱乐领域的交互式内容创建。比如,基于该技术,可以开发教育工具让学生在三维空间中理解战术布局,或为体育解说员提供辅助,以更直观的方式解析比赛情况。
这个项目展示了如何结合先进的图像处理技术和机器学习算法,为传统视频内容创造全新的观看和互动方式,开启了体育内容消费的新视角。开发者和研究人员可以基于此项目进一步探索更多可能性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00