Soccer On Your Tabletop - 将YouTube足球视频转化为3D视图教程
项目介绍
"Soccer On Your Tabletop" 是一个开源项目,旨在将YouTube上的足球比赛视频转换成适用于增强现实(AR)和虚拟现实(VR)设备的3D模型。该系统通过复杂的计算机视觉技术,包括对象检测、分割、姿态估计及深度学习,从单目视频中重建出球员和场地的动态3D重建。这项工作由Konstantinos Rematas等人在CVPR 2018上发表。
项目快速启动
环境准备
首先,确保你的开发环境已经安装了必要的工具和库。你需要Python 3以及一系列依赖项,可以通过以下命令安装基本Python依赖:
git clone https://github.com/krematas/soccerontable.git
cd soccerontable
pip3 install -r requirements.txt
除了上述步骤,还需要安装特定的非pip包,如Detectron (Python 2版本),OpenPose,OpenCV,Eigen3,CocoAPI等,并遵循相应的安装指南。
运行示例
-
下载示例数据集并解压:
wget http://grail.cs.washington.edu/projects/soccer/barcelona.zip unzip barcelona.zip -
使用Detectron获取检测框和分割掩模:
mkdir barcelona/detectron # 需要先配置Detectron到指定路径,并调整下方命令中的路径 python2 path_to_detectron/tools/infer_subimages.py --cfg ... --wts ... -
接下来的步骤涉及相机校准、玩家姿态估计、玩家分割和深度估计等,每个环节都有详细的脚本在
demo目录下,需要依次执行。
注意
- 安装Detectron和OpenPose可能需要针对特定平台进行设置。
- 确保所有依赖已正确配置,特别是Python2和Python3兼容性问题需特别注意。
应用案例和最佳实践
该项目最佳应用于足球赛事的AR展示,能够将比赛视频中的场景立体化,让用户能够在AR或VR设备中体验仿佛球员就在桌面上踢球的感觉。开发者可以利用此框架来创作交互式体育回放分析软件,或者为粉丝提供沉浸式的观赛体验。
典型生态项目
虽然直接关联的“典型生态项目”信息未直接提供,但类似的项目和技术可以应用于广泛的体育视频分析、实时运动捕捉、以及教育和娱乐领域的交互式内容创建。比如,基于该技术,可以开发教育工具让学生在三维空间中理解战术布局,或为体育解说员提供辅助,以更直观的方式解析比赛情况。
这个项目展示了如何结合先进的图像处理技术和机器学习算法,为传统视频内容创造全新的观看和互动方式,开启了体育内容消费的新视角。开发者和研究人员可以基于此项目进一步探索更多可能性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00