开源项目最佳实践:Prior-Depth-Anything
2025-05-19 21:19:36作者:江焘钦
1. 项目介绍
Prior-Depth-Anything 是一个开源项目,旨在结合不完整但精确的深度测量度量和相对但完整的几何结构深度预测,为任何场景生成准确、密集和详细的度量化深度图。该框架通过整合先验深度信息与图像内容,提高了深度估计的精度和鲁棒性。
2. 项目快速启动
环境准备
首先,确保您的系统中安装了 Python 3.9,然后克隆仓库并创建一个新的虚拟环境:
git clone https://github.com/SpatialVision/Prior-Depth-Anything.git
conda create -n priorda python=3.9
conda activate priorda
cd Prior-Depth-Anything
安装依赖
接下来,安装项目所需的依赖:
pip install -r requirements.txt
或者,您可以选择将 Prior-Depth-Anything 安装为包:
pip install -e .
运行示例
运行以下命令来执行 CLI 演示。首次执行时,模型权重将自动从 Hugging Face Model Hub 下载:
priorda test --image_path assets/sample-1/rgb.jpg --prior_path assets/sample-1/gt_depth.png --pattern downscale_32 --visualize 1
或者,您可以使用 Python 代码来运行演示:
import torch
from prior_depth_anything import PriorDepthAnything
device = "cuda:0" if torch.cuda.is_available() else "cpu"
priorda = PriorDepthAnything(device=device)
image_path = 'assets/sample-2/rgb.jpg'
prior_path = 'assets/sample-2/prior_depth.png'
output = priorda.infer_one_sample(image=image_path, prior=prior_path, visualize=True)
运行完成后,结果将保存到 ./output 目录中。
3. 应用案例和最佳实践
使用 Prior-Depth-Anything 作为插件
Prior-Depth-Anything 展示了出色的零样本鲁棒性,即使在多变且可能嘈杂的先验输入存在下也能工作。它可以作为一个即插即用的模块,集成到其他深度估计框架中,提高其性能。
以下是一个使用 VGGT 模型的示例:
- 使用 VGGT 模型预测深度图。
- 使用 Prior-Depth-Anything 来细化深度图。
import torch
from vggt.models.vggt import VGGT
from vggt.utils.load_fn import load_and_preprocess_images
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] >= 8 else torch.float16
model = VGGT.from_pretrained("facebook/VGGT-1B").to(device)
image_names = ['assets/sample-2/rgb.jpg']
images = load_and_preprocess_images(image_names).to(device)
with torch.no_grad():
with torch.cuda.amp.autocast(dtype=dtype):
predictions = model(images)
然后,使用 Prior-Depth-Anything 细化深度图。
from PIL import Image
import numpy as np
import torch.nn.functional as F
from prior_depth_anything.plugin import PriorDARefiner, PriorDARefinerMetrics
Refiner = PriorDARefiner(device=device)
priorda_image = torch.from_numpy(np.asarray(Image.open(image_names[0])).astype(np.uint8))
depth_map, depth_conf = predictions['depth'], predictions['depth_conf']
refined_depth, meview_depth_map = Refiner.predict(image=priorda_image, depth_map=depth_map.squeeze(), confidence=depth_conf.squeeze())
4. 典型生态项目
目前,Prior-Depth-Anything 主要与 VGGT 等深度估计框架集成。未来,开发者可以将其集成到更多的深度估计项目中,形成一个更加丰富和多样化的技术生态。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.68 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
632
143