开源项目最佳实践:Prior-Depth-Anything
2025-05-19 11:10:55作者:江焘钦
1. 项目介绍
Prior-Depth-Anything 是一个开源项目,旨在结合不完整但精确的深度测量度量和相对但完整的几何结构深度预测,为任何场景生成准确、密集和详细的度量化深度图。该框架通过整合先验深度信息与图像内容,提高了深度估计的精度和鲁棒性。
2. 项目快速启动
环境准备
首先,确保您的系统中安装了 Python 3.9,然后克隆仓库并创建一个新的虚拟环境:
git clone https://github.com/SpatialVision/Prior-Depth-Anything.git
conda create -n priorda python=3.9
conda activate priorda
cd Prior-Depth-Anything
安装依赖
接下来,安装项目所需的依赖:
pip install -r requirements.txt
或者,您可以选择将 Prior-Depth-Anything 安装为包:
pip install -e .
运行示例
运行以下命令来执行 CLI 演示。首次执行时,模型权重将自动从 Hugging Face Model Hub 下载:
priorda test --image_path assets/sample-1/rgb.jpg --prior_path assets/sample-1/gt_depth.png --pattern downscale_32 --visualize 1
或者,您可以使用 Python 代码来运行演示:
import torch
from prior_depth_anything import PriorDepthAnything
device = "cuda:0" if torch.cuda.is_available() else "cpu"
priorda = PriorDepthAnything(device=device)
image_path = 'assets/sample-2/rgb.jpg'
prior_path = 'assets/sample-2/prior_depth.png'
output = priorda.infer_one_sample(image=image_path, prior=prior_path, visualize=True)
运行完成后,结果将保存到 ./output 目录中。
3. 应用案例和最佳实践
使用 Prior-Depth-Anything 作为插件
Prior-Depth-Anything 展示了出色的零样本鲁棒性,即使在多变且可能嘈杂的先验输入存在下也能工作。它可以作为一个即插即用的模块,集成到其他深度估计框架中,提高其性能。
以下是一个使用 VGGT 模型的示例:
- 使用 VGGT 模型预测深度图。
- 使用 Prior-Depth-Anything 来细化深度图。
import torch
from vggt.models.vggt import VGGT
from vggt.utils.load_fn import load_and_preprocess_images
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] >= 8 else torch.float16
model = VGGT.from_pretrained("facebook/VGGT-1B").to(device)
image_names = ['assets/sample-2/rgb.jpg']
images = load_and_preprocess_images(image_names).to(device)
with torch.no_grad():
with torch.cuda.amp.autocast(dtype=dtype):
predictions = model(images)
然后,使用 Prior-Depth-Anything 细化深度图。
from PIL import Image
import numpy as np
import torch.nn.functional as F
from prior_depth_anything.plugin import PriorDARefiner, PriorDARefinerMetrics
Refiner = PriorDARefiner(device=device)
priorda_image = torch.from_numpy(np.asarray(Image.open(image_names[0])).astype(np.uint8))
depth_map, depth_conf = predictions['depth'], predictions['depth_conf']
refined_depth, meview_depth_map = Refiner.predict(image=priorda_image, depth_map=depth_map.squeeze(), confidence=depth_conf.squeeze())
4. 典型生态项目
目前,Prior-Depth-Anything 主要与 VGGT 等深度估计框架集成。未来,开发者可以将其集成到更多的深度估计项目中,形成一个更加丰富和多样化的技术生态。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
26