开源项目最佳实践:Prior-Depth-Anything
2025-05-19 16:25:48作者:江焘钦
1. 项目介绍
Prior-Depth-Anything 是一个开源项目,旨在结合不完整但精确的深度测量度量和相对但完整的几何结构深度预测,为任何场景生成准确、密集和详细的度量化深度图。该框架通过整合先验深度信息与图像内容,提高了深度估计的精度和鲁棒性。
2. 项目快速启动
环境准备
首先,确保您的系统中安装了 Python 3.9,然后克隆仓库并创建一个新的虚拟环境:
git clone https://github.com/SpatialVision/Prior-Depth-Anything.git
conda create -n priorda python=3.9
conda activate priorda
cd Prior-Depth-Anything
安装依赖
接下来,安装项目所需的依赖:
pip install -r requirements.txt
或者,您可以选择将 Prior-Depth-Anything 安装为包:
pip install -e .
运行示例
运行以下命令来执行 CLI 演示。首次执行时,模型权重将自动从 Hugging Face Model Hub 下载:
priorda test --image_path assets/sample-1/rgb.jpg --prior_path assets/sample-1/gt_depth.png --pattern downscale_32 --visualize 1
或者,您可以使用 Python 代码来运行演示:
import torch
from prior_depth_anything import PriorDepthAnything
device = "cuda:0" if torch.cuda.is_available() else "cpu"
priorda = PriorDepthAnything(device=device)
image_path = 'assets/sample-2/rgb.jpg'
prior_path = 'assets/sample-2/prior_depth.png'
output = priorda.infer_one_sample(image=image_path, prior=prior_path, visualize=True)
运行完成后,结果将保存到 ./output 目录中。
3. 应用案例和最佳实践
使用 Prior-Depth-Anything 作为插件
Prior-Depth-Anything 展示了出色的零样本鲁棒性,即使在多变且可能嘈杂的先验输入存在下也能工作。它可以作为一个即插即用的模块,集成到其他深度估计框架中,提高其性能。
以下是一个使用 VGGT 模型的示例:
- 使用 VGGT 模型预测深度图。
- 使用 Prior-Depth-Anything 来细化深度图。
import torch
from vggt.models.vggt import VGGT
from vggt.utils.load_fn import load_and_preprocess_images
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] >= 8 else torch.float16
model = VGGT.from_pretrained("facebook/VGGT-1B").to(device)
image_names = ['assets/sample-2/rgb.jpg']
images = load_and_preprocess_images(image_names).to(device)
with torch.no_grad():
with torch.cuda.amp.autocast(dtype=dtype):
predictions = model(images)
然后,使用 Prior-Depth-Anything 细化深度图。
from PIL import Image
import numpy as np
import torch.nn.functional as F
from prior_depth_anything.plugin import PriorDARefiner, PriorDARefinerMetrics
Refiner = PriorDARefiner(device=device)
priorda_image = torch.from_numpy(np.asarray(Image.open(image_names[0])).astype(np.uint8))
depth_map, depth_conf = predictions['depth'], predictions['depth_conf']
refined_depth, meview_depth_map = Refiner.predict(image=priorda_image, depth_map=depth_map.squeeze(), confidence=depth_conf.squeeze())
4. 典型生态项目
目前,Prior-Depth-Anything 主要与 VGGT 等深度估计框架集成。未来,开发者可以将其集成到更多的深度估计项目中,形成一个更加丰富和多样化的技术生态。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355