开源项目最佳实践:Prior-Depth-Anything
2025-05-19 02:21:16作者:江焘钦
1. 项目介绍
Prior-Depth-Anything 是一个开源项目,旨在结合不完整但精确的深度测量度量和相对但完整的几何结构深度预测,为任何场景生成准确、密集和详细的度量化深度图。该框架通过整合先验深度信息与图像内容,提高了深度估计的精度和鲁棒性。
2. 项目快速启动
环境准备
首先,确保您的系统中安装了 Python 3.9,然后克隆仓库并创建一个新的虚拟环境:
git clone https://github.com/SpatialVision/Prior-Depth-Anything.git
conda create -n priorda python=3.9
conda activate priorda
cd Prior-Depth-Anything
安装依赖
接下来,安装项目所需的依赖:
pip install -r requirements.txt
或者,您可以选择将 Prior-Depth-Anything 安装为包:
pip install -e .
运行示例
运行以下命令来执行 CLI 演示。首次执行时,模型权重将自动从 Hugging Face Model Hub 下载:
priorda test --image_path assets/sample-1/rgb.jpg --prior_path assets/sample-1/gt_depth.png --pattern downscale_32 --visualize 1
或者,您可以使用 Python 代码来运行演示:
import torch
from prior_depth_anything import PriorDepthAnything
device = "cuda:0" if torch.cuda.is_available() else "cpu"
priorda = PriorDepthAnything(device=device)
image_path = 'assets/sample-2/rgb.jpg'
prior_path = 'assets/sample-2/prior_depth.png'
output = priorda.infer_one_sample(image=image_path, prior=prior_path, visualize=True)
运行完成后,结果将保存到 ./output 目录中。
3. 应用案例和最佳实践
使用 Prior-Depth-Anything 作为插件
Prior-Depth-Anything 展示了出色的零样本鲁棒性,即使在多变且可能嘈杂的先验输入存在下也能工作。它可以作为一个即插即用的模块,集成到其他深度估计框架中,提高其性能。
以下是一个使用 VGGT 模型的示例:
- 使用 VGGT 模型预测深度图。
- 使用 Prior-Depth-Anything 来细化深度图。
import torch
from vggt.models.vggt import VGGT
from vggt.utils.load_fn import load_and_preprocess_images
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] >= 8 else torch.float16
model = VGGT.from_pretrained("facebook/VGGT-1B").to(device)
image_names = ['assets/sample-2/rgb.jpg']
images = load_and_preprocess_images(image_names).to(device)
with torch.no_grad():
with torch.cuda.amp.autocast(dtype=dtype):
predictions = model(images)
然后,使用 Prior-Depth-Anything 细化深度图。
from PIL import Image
import numpy as np
import torch.nn.functional as F
from prior_depth_anything.plugin import PriorDARefiner, PriorDARefinerMetrics
Refiner = PriorDARefiner(device=device)
priorda_image = torch.from_numpy(np.asarray(Image.open(image_names[0])).astype(np.uint8))
depth_map, depth_conf = predictions['depth'], predictions['depth_conf']
refined_depth, meview_depth_map = Refiner.predict(image=priorda_image, depth_map=depth_map.squeeze(), confidence=depth_conf.squeeze())
4. 典型生态项目
目前,Prior-Depth-Anything 主要与 VGGT 等深度估计框架集成。未来,开发者可以将其集成到更多的深度估计项目中,形成一个更加丰富和多样化的技术生态。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
422
3.25 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
331
暂无简介
Dart
686
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869