LLMs-from-scratch项目中温度缩放技术的文本补遗分析
在构建大型语言模型(LLM)的过程中,温度缩放(Temperature Scaling)是一个关键的技术环节。温度缩放主要用于调整模型输出的概率分布,从而控制生成文本的多样性和确定性。然而,在rasbt/LLMs-from-scratch项目的5.3.1章节中,关于温度缩放的一个技术描述出现了文本缺失的情况。
具体来说,在描述模型输出的softmax概率分布时,原句"Since the largest logit value, and correspondingly the largest softmax probability score, is in the fourth position (index position 3 since Python uses 0-indexing), the generated word is"缺少了关键的"forward"一词。这个缺失虽然看似微小,但对于理解模型输出机制却十分重要。
从技术角度来看,这个句子描述的是模型在计算完logits值后,通过softmax函数将其转换为概率分布,然后选择概率最大的词作为输出的过程。完整的表述应该明确指出模型是"forward"(向前)生成这个词的,这体现了语言模型的自回归特性——即模型是基于前面已生成的词来预测下一个词。
对于初学者而言,理解这个细节非常重要:
- 它展示了模型预测的基本流程
- 强调了语言模型生成文本的顺序性
- 体现了温度参数如何影响最终的词选择
在实际应用中,温度参数可以调节模型输出的创造性:
- 高温(>1.0)会使概率分布更平滑,输出更多样化
- 低温(<1.0)会强化最大概率词的优势,输出更确定
- 温度=1.0时保持原始概率分布
这个文本补遗虽然只是修正了一个单词,但它确保了技术描述的完整性,使读者能够更准确地理解语言模型的工作原理。对于正在学习构建LLM的开发者来说,这样的细节修正有助于建立更清晰的概念框架。
项目维护者已经确认这个修正会体现在后续的PDF版本中,这体现了开源项目对技术文档准确性的重视。对于LLM学习者来说,关注这样的技术细节有助于深入理解模型的内在机制。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









