首页
/ LLMs-from-scratch项目中温度缩放技术的文本补遗分析

LLMs-from-scratch项目中温度缩放技术的文本补遗分析

2025-05-01 07:52:08作者:瞿蔚英Wynne

在构建大型语言模型(LLM)的过程中,温度缩放(Temperature Scaling)是一个关键的技术环节。温度缩放主要用于调整模型输出的概率分布,从而控制生成文本的多样性和确定性。然而,在rasbt/LLMs-from-scratch项目的5.3.1章节中,关于温度缩放的一个技术描述出现了文本缺失的情况。

具体来说,在描述模型输出的softmax概率分布时,原句"Since the largest logit value, and correspondingly the largest softmax probability score, is in the fourth position (index position 3 since Python uses 0-indexing), the generated word is"缺少了关键的"forward"一词。这个缺失虽然看似微小,但对于理解模型输出机制却十分重要。

从技术角度来看,这个句子描述的是模型在计算完logits值后,通过softmax函数将其转换为概率分布,然后选择概率最大的词作为输出的过程。完整的表述应该明确指出模型是"forward"(向前)生成这个词的,这体现了语言模型的自回归特性——即模型是基于前面已生成的词来预测下一个词。

对于初学者而言,理解这个细节非常重要:

  1. 它展示了模型预测的基本流程
  2. 强调了语言模型生成文本的顺序性
  3. 体现了温度参数如何影响最终的词选择

在实际应用中,温度参数可以调节模型输出的创造性:

  • 高温(>1.0)会使概率分布更平滑,输出更多样化
  • 低温(<1.0)会强化最大概率词的优势,输出更确定
  • 温度=1.0时保持原始概率分布

这个文本补遗虽然只是修正了一个单词,但它确保了技术描述的完整性,使读者能够更准确地理解语言模型的工作原理。对于正在学习构建LLM的开发者来说,这样的细节修正有助于建立更清晰的概念框架。

项目维护者已经确认这个修正会体现在后续的PDF版本中,这体现了开源项目对技术文档准确性的重视。对于LLM学习者来说,关注这样的技术细节有助于深入理解模型的内在机制。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8