领航医疗数据新时代:EHRSHOT 开源项目深度解析
在这个信息爆炸的时代,电子健康记录(Electronic Health Records, EHR)已成为医学研究和临床决策的重要工具。然而,如何高效地利用这些海量数据,特别是在少量样本的情况下评估基础模型的性能,一直以来都是一个挑战。今天,我们要向您隆重推荐一个致力于解决这个问题的开源项目——EHRSHOT。
项目简介
EHRSHOT 是一个专为EHR数据设计的基准测试平台,它包含了斯坦福大学医学院6,739名患者的完整长期健康记录,并提供了15个针对少量样本评估的分类任务。与以往局限于重症监护室(ICU)场景的EHR基准不同,EHRSHOT覆盖了更广泛的数据来源,旨在全面评估预训练模型在临床环境中的适应性和泛化能力。
项目技术分析
EHRSHOT的核心是其预训练的基础模型——CLMBR(Clinical Language-Model-Based Representations)。这是一个拥有141百万参数的临床模型,基于结构化的EHR数据对257万名患者进行了预训练。CLMBR采用了自回归架构,能预测患者历史记录中的下一个医疗代码,确保信息的前向传递,避免了双向依赖,使得模型更适合预测任务。
应用场景
EHRSHOT 提供的15个分类任务包括住院时长预测、再入院风险评估、ICU转诊判断等多个实际临床问题。这些任务旨在模拟真实世界中医生可能遇到的情景,以检验模型在处理复杂、多变的医疗事件序列上的性能。
项目特点
- 多样化的数据集:EHRSHOT 包含超过41.6万个临床事件,涵盖多种类型的医疗任务,能够充分展示模型的真实表现。
- 完整的预处理流程:项目提供了一整套数据预处理工具——FEMR,简化了从原始EHR数据到可学习表示的过程。
- 针对性的少量样本评估:所有的任务都设计成少量样本形式,直接反映了模型在资源有限情况下的实用价值。
- 开放共享:EHRSHOT 提供了预训练模型和数据集,便于研究人员进行复现和扩展研究。
要启动EHRSHOT,请遵循快速入门指南,通过简单的命令行操作即可获取数据、安装必要依赖并运行基准测试。
总的来说,EHRSHOT 为医疗数据分析打开了新的篇章,不仅促进了EHR数据处理技术的发展,也为我们理解和应用这些数据提供了有力的工具。对于医疗AI领域的研究人员、开发者以及关注患者健康管理的人来说,EHRSHOT 是一个不容错过的重要资源。立即加入,开启您的EHR数据探索之旅!
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~057CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









