领航医疗数据新时代:EHRSHOT 开源项目深度解析
在这个信息爆炸的时代,电子健康记录(Electronic Health Records, EHR)已成为医学研究和临床决策的重要工具。然而,如何高效地利用这些海量数据,特别是在少量样本的情况下评估基础模型的性能,一直以来都是一个挑战。今天,我们要向您隆重推荐一个致力于解决这个问题的开源项目——EHRSHOT。
项目简介
EHRSHOT 是一个专为EHR数据设计的基准测试平台,它包含了斯坦福大学医学院6,739名患者的完整长期健康记录,并提供了15个针对少量样本评估的分类任务。与以往局限于重症监护室(ICU)场景的EHR基准不同,EHRSHOT覆盖了更广泛的数据来源,旨在全面评估预训练模型在临床环境中的适应性和泛化能力。
项目技术分析
EHRSHOT的核心是其预训练的基础模型——CLMBR(Clinical Language-Model-Based Representations)。这是一个拥有141百万参数的临床模型,基于结构化的EHR数据对257万名患者进行了预训练。CLMBR采用了自回归架构,能预测患者历史记录中的下一个医疗代码,确保信息的前向传递,避免了双向依赖,使得模型更适合预测任务。
应用场景
EHRSHOT 提供的15个分类任务包括住院时长预测、再入院风险评估、ICU转诊判断等多个实际临床问题。这些任务旨在模拟真实世界中医生可能遇到的情景,以检验模型在处理复杂、多变的医疗事件序列上的性能。
项目特点
- 多样化的数据集:EHRSHOT 包含超过41.6万个临床事件,涵盖多种类型的医疗任务,能够充分展示模型的真实表现。
- 完整的预处理流程:项目提供了一整套数据预处理工具——FEMR,简化了从原始EHR数据到可学习表示的过程。
- 针对性的少量样本评估:所有的任务都设计成少量样本形式,直接反映了模型在资源有限情况下的实用价值。
- 开放共享:EHRSHOT 提供了预训练模型和数据集,便于研究人员进行复现和扩展研究。
要启动EHRSHOT,请遵循快速入门指南,通过简单的命令行操作即可获取数据、安装必要依赖并运行基准测试。
总的来说,EHRSHOT 为医疗数据分析打开了新的篇章,不仅促进了EHR数据处理技术的发展,也为我们理解和应用这些数据提供了有力的工具。对于医疗AI领域的研究人员、开发者以及关注患者健康管理的人来说,EHRSHOT 是一个不容错过的重要资源。立即加入,开启您的EHR数据探索之旅!
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00