推荐项目:3DSAM-adapter,将医疗图像分割带入新维度
在医学影像领域,精确的肿瘤识别与分割是诊断和治疗规划的关键。然而,尽管“任意分割模型”(SAM)在日常图像中展现出了令人印象深刻的表现,它在处理复杂的医疗图像时却面临挑战,特别是在针对小尺寸、不规则形状、低对比度对象——如肿瘤的分割任务上。面对这一困境,一个名为3DSAM-adapter的创新开源项目应运而生,旨在通过从二维到三维的全面适应,增强SAM在医疗领域的应用效能。
项目介绍
3DSAM-adapter,基于论文《3DSAM-adapter: Holistic Adaptation of SAM from 2D to 3D for Promptable Medical Image Segmentation》,由一众学者合力研发。项目通过精心设计的架构调整,让原为二维自然图像设计的SAM能够有效应对三维体积医疗数据的挑战,同时保持其预训练参数的有效复用性,以最小的额外成本实现深度学习模型的高效迁移。
技术分析
项目采用参数高效的微调策略,仅引入少量轻量级的空间适配器进行调优,而大部分预先训练好的参数得以冻结,确保了模型在维持性能的同时减少了训练负担。这种策略巧妙地跨越了自然图像与医疗数据之间的领域差距,以及2D与3D空间结构的差异,使模型能精准捕捉医疗影像中的空间模式。
应用场景
3DSAM-adapter尤其适合于精准医疗领域,尤其是肿瘤的自动标记与分割。通过在KiTS2021、MSD-Pancreas、LiTS2017和MSD-Colon等四个开源医疗影像数据集上的实验,项目展示出卓越的性能,特别是对肾肿瘤、胰腺肿瘤、结肠癌的分割,实现了显著优于当前状态-of-the-art模型的效果,提升幅度达到8.25%至29.87%不等。
项目特点
- 无缝2D到3D转变:通过专门的架构改造,使得SAM能直接应用于三维医疗影像。
- 保留预训练优势:最大化利用已有的模型知识,减少重新训练的需求。
- 轻量化适应:仅需微小的调整即可适应复杂环境,降低资源消耗。
- 高精度医疗图像分割:在多类肿瘤分割任务中表现突出,提高了临床应用的价值。
- 开源共享:提供完整的代码实现和详细指南,便于研究者和开发者快速上手并扩展应用。
通过集成3DSAM-adapter,研究人员和医生可以更加精准、高效地进行病灶定位,加速疾病诊断进程,促进个性化医疗的发展。对于那些致力于提高医疗成像解析度和准确性的团队而言,这个开源项目无疑是一个强大的工具,值得深入探索与应用。
如何开始
项目支持Python 3.9.16、CUDA 11.3和特定版本的PyTorch环境,详细的安装步骤及运行指南可以在项目GitHub页面找到。无论是专业研究还是实践应用,3DSAM-adapter都提供了详尽的文档和示例,为用户提供了一条清晰的研发路径。
加入医疗图像处理的最前沿,用3DSAM-adapter开启你的高性能医疗影像分析之旅。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00