推荐项目:3DSAM-adapter,将医疗图像分割带入新维度
在医学影像领域,精确的肿瘤识别与分割是诊断和治疗规划的关键。然而,尽管“任意分割模型”(SAM)在日常图像中展现出了令人印象深刻的表现,它在处理复杂的医疗图像时却面临挑战,特别是在针对小尺寸、不规则形状、低对比度对象——如肿瘤的分割任务上。面对这一困境,一个名为3DSAM-adapter的创新开源项目应运而生,旨在通过从二维到三维的全面适应,增强SAM在医疗领域的应用效能。
项目介绍
3DSAM-adapter,基于论文《3DSAM-adapter: Holistic Adaptation of SAM from 2D to 3D for Promptable Medical Image Segmentation》,由一众学者合力研发。项目通过精心设计的架构调整,让原为二维自然图像设计的SAM能够有效应对三维体积医疗数据的挑战,同时保持其预训练参数的有效复用性,以最小的额外成本实现深度学习模型的高效迁移。
技术分析
项目采用参数高效的微调策略,仅引入少量轻量级的空间适配器进行调优,而大部分预先训练好的参数得以冻结,确保了模型在维持性能的同时减少了训练负担。这种策略巧妙地跨越了自然图像与医疗数据之间的领域差距,以及2D与3D空间结构的差异,使模型能精准捕捉医疗影像中的空间模式。
应用场景
3DSAM-adapter尤其适合于精准医疗领域,尤其是肿瘤的自动标记与分割。通过在KiTS2021、MSD-Pancreas、LiTS2017和MSD-Colon等四个开源医疗影像数据集上的实验,项目展示出卓越的性能,特别是对肾肿瘤、胰腺肿瘤、结肠癌的分割,实现了显著优于当前状态-of-the-art模型的效果,提升幅度达到8.25%至29.87%不等。
项目特点
- 无缝2D到3D转变:通过专门的架构改造,使得SAM能直接应用于三维医疗影像。
- 保留预训练优势:最大化利用已有的模型知识,减少重新训练的需求。
- 轻量化适应:仅需微小的调整即可适应复杂环境,降低资源消耗。
- 高精度医疗图像分割:在多类肿瘤分割任务中表现突出,提高了临床应用的价值。
- 开源共享:提供完整的代码实现和详细指南,便于研究者和开发者快速上手并扩展应用。
通过集成3DSAM-adapter,研究人员和医生可以更加精准、高效地进行病灶定位,加速疾病诊断进程,促进个性化医疗的发展。对于那些致力于提高医疗成像解析度和准确性的团队而言,这个开源项目无疑是一个强大的工具,值得深入探索与应用。
如何开始
项目支持Python 3.9.16、CUDA 11.3和特定版本的PyTorch环境,详细的安装步骤及运行指南可以在项目GitHub页面找到。无论是专业研究还是实践应用,3DSAM-adapter都提供了详尽的文档和示例,为用户提供了一条清晰的研发路径。
加入医疗图像处理的最前沿,用3DSAM-adapter开启你的高性能医疗影像分析之旅。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C026
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00