推荐项目:3DSAM-adapter,将医疗图像分割带入新维度
在医学影像领域,精确的肿瘤识别与分割是诊断和治疗规划的关键。然而,尽管“任意分割模型”(SAM)在日常图像中展现出了令人印象深刻的表现,它在处理复杂的医疗图像时却面临挑战,特别是在针对小尺寸、不规则形状、低对比度对象——如肿瘤的分割任务上。面对这一困境,一个名为3DSAM-adapter的创新开源项目应运而生,旨在通过从二维到三维的全面适应,增强SAM在医疗领域的应用效能。
项目介绍
3DSAM-adapter,基于论文《3DSAM-adapter: Holistic Adaptation of SAM from 2D to 3D for Promptable Medical Image Segmentation》,由一众学者合力研发。项目通过精心设计的架构调整,让原为二维自然图像设计的SAM能够有效应对三维体积医疗数据的挑战,同时保持其预训练参数的有效复用性,以最小的额外成本实现深度学习模型的高效迁移。
技术分析
项目采用参数高效的微调策略,仅引入少量轻量级的空间适配器进行调优,而大部分预先训练好的参数得以冻结,确保了模型在维持性能的同时减少了训练负担。这种策略巧妙地跨越了自然图像与医疗数据之间的领域差距,以及2D与3D空间结构的差异,使模型能精准捕捉医疗影像中的空间模式。
应用场景
3DSAM-adapter尤其适合于精准医疗领域,尤其是肿瘤的自动标记与分割。通过在KiTS2021、MSD-Pancreas、LiTS2017和MSD-Colon等四个开源医疗影像数据集上的实验,项目展示出卓越的性能,特别是对肾肿瘤、胰腺肿瘤、结肠癌的分割,实现了显著优于当前状态-of-the-art模型的效果,提升幅度达到8.25%至29.87%不等。
项目特点
- 无缝2D到3D转变:通过专门的架构改造,使得SAM能直接应用于三维医疗影像。
- 保留预训练优势:最大化利用已有的模型知识,减少重新训练的需求。
- 轻量化适应:仅需微小的调整即可适应复杂环境,降低资源消耗。
- 高精度医疗图像分割:在多类肿瘤分割任务中表现突出,提高了临床应用的价值。
- 开源共享:提供完整的代码实现和详细指南,便于研究者和开发者快速上手并扩展应用。
通过集成3DSAM-adapter,研究人员和医生可以更加精准、高效地进行病灶定位,加速疾病诊断进程,促进个性化医疗的发展。对于那些致力于提高医疗成像解析度和准确性的团队而言,这个开源项目无疑是一个强大的工具,值得深入探索与应用。
如何开始
项目支持Python 3.9.16、CUDA 11.3和特定版本的PyTorch环境,详细的安装步骤及运行指南可以在项目GitHub页面找到。无论是专业研究还是实践应用,3DSAM-adapter都提供了详尽的文档和示例,为用户提供了一条清晰的研发路径。
加入医疗图像处理的最前沿,用3DSAM-adapter开启你的高性能医疗影像分析之旅。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0372Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0104AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









