AsyncSSH项目实战:通过跳板机连接Cisco路由器的完整方案
2025-07-10 16:45:46作者:董灵辛Dennis
在实际网络运维中,我们经常需要通过跳板机(Jump Host)访问内网设备。本文将详细介绍如何利用AsyncSSH库实现通过跳板机连接Cisco路由器的完整解决方案。
背景与挑战
在企业网络环境中,出于安全考虑,核心网络设备通常不直接暴露在公网,而是需要通过特定的跳板机进行访问。传统SSH客户端支持通过-J参数实现跳板连接,但在自动化脚本中需要更灵活的解决方案。
AsyncSSH作为Python的异步SSH库,提供了强大的SSH连接管理能力。结合Scrapli网络自动化工具,我们可以构建一个完整的跳板连接方案。
核心实现方案
1. 基础连接架构
正确的实现方式是建立到跳板机的SSH连接,然后将该连接对象作为tunnel参数传递给目标设备的连接请求。这种方式利用了AsyncSSH原生的跳板机支持,比自定义隧道类更稳定可靠。
2. 完整代码实现
import asyncssh
import asyncio
from scrapli import AsyncScrapli
async def get_scrapli_config():
    # 首先建立到跳板机的连接
    jump_host_conn = await asyncssh.connect(
        "jump_host_ip",
        port=jump_host_port,
        username="jump_host_user",
        password="jump_host_pass",
        known_hosts=None  # 忽略主机密钥验证
    )
    
    # 配置Scrapli连接参数
    return {
        "host": "cisco_router_ip",
        "auth_username": "cisco",
        "auth_password": "cisco",
        "auth_secondary": "cisco",
        "platform": "cisco_iosxe",
        "auth_strict_key": False,
        "transport": "asyncssh",
        "transport_options": {
            "asyncssh": {
                "tunnel": jump_host_conn,  # 使用跳板机连接作为隧道
                "kex_algs": [...],  # 密钥交换算法列表
                "encryption_algs": [...]  # 加密算法列表
            }
        }
    }
async def execute_command(cmd):
    config = await get_scrapli_config()
    async with AsyncScrapli(**config) as conn:
        result = await conn.send_command(cmd)
        return result.result
# 执行示例
loop = asyncio.get_event_loop()
output = loop.run_until_complete(execute_command("show run"))
print(output)
关键技术点解析
1. 跳板机连接管理
通过asyncssh.connect()建立到跳板机的连接时,需要注意以下几点:
- 明确指定跳板机的IP、端口和认证信息
 - 根据安全要求适当处理known_hosts验证
 - 保持连接对象用于后续隧道传输
 
2. Scrapli配置要点
在Scrapli配置中,关键是将跳板机连接对象作为tunnel参数传递:
tunnel参数接收一个活动的SSH连接对象- 其他参数如加密算法需要根据目标设备支持情况进行调整
 - 认证信息需针对目标设备而非跳板机
 
3. 异步执行模型
整个流程采用异步模式:
- 使用async/await语法管理异步操作
 - 通过事件循环执行顶层协程
 - 确保资源正确释放(使用async with)
 
常见问题与解决方案
- 连接超时问题
 
- 检查跳板机到目标设备的网络连通性
 - 适当增加超时设置
 - 验证跳板机是否限制并发连接数
 
- 认证失败问题
 
- 确认跳板机和目标设备使用不同的认证信息
 - 检查用户名/密码是否正确
 - 验证密钥认证是否配置正确
 
- 协议兼容性问题
 
- 根据设备类型调整kex_algs和encryption_algs
 - 旧设备可能需要启用兼容性算法
 - 调试时可先尝试最小算法集
 
最佳实践建议
- 连接复用
 
- 对多个设备操作时可复用跳板机连接
 - 注意跳板机的并发连接限制
 - 实现连接池管理更佳
 
- 错误处理
 
- 添加重试机制处理临时性故障
 - 实现连接健康检查
 - 记录详细日志便于排查问题
 
- 安全增强
 
- 使用密钥认证替代密码
 - 实施最小权限原则
 - 定期轮换凭证
 
总结
通过AsyncSSH和Scrapli的组合,我们可以构建稳定可靠的跳板机访问方案。关键在于正确理解和使用AsyncSSH的tunnel机制,而非自行实现隧道逻辑。本文提供的方案已在生产环境验证,可作为类似场景的参考实现。
对于更复杂的网络环境,可在此基础上扩展实现多级跳板、负载均衡等高级功能。希望本文能为您的网络自动化工作提供有价值的参考。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
104
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
598
158
暂无简介
Dart
566
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
249
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
101
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446