MARTI项目中的多智能体奖励机制与训练策略解析
引言
在人工智能领域,多智能体系统(Multi-Agent Systems, MAS)因其在复杂任务解决中的协同优势而备受关注。TsinghuaC3I/MARTI项目提出了一套完整的多智能体训练框架,本文将深入剖析其中的奖励分配机制与策略训练方法。
基于规则的奖励塑造
对于数学问题等具有可验证解的领域,MARTI采用了基于规则的奖励模型(如DeepSeek-R1)。这种方法特别适合混合智能体和多智能体辩论场景,其中每个智能体的输出可以直接与标准答案比对。
时间一致性增强策略
MARTI引入了来自MAPoRL的推理感知奖励塑造策略,通过整合历史表现信息来提升多轮交互中的时间一致性。该策略包含两个核心组件:
- 质量模式(Quality Mode):鼓励智能体保持与历史表现一致的正确性
- 边际模式(Margin Mode):直接奖励超越历史平均表现的智能体
数学表达上,设为第轮智能体的即时正确性奖励,为其历史表现估计值:
动态塑造项的计算方式为:
- 边际模式:
- 质量模式:
最终奖励计算公式为:,其中是可调超参数。
基于树的AgentPRM方法
当最终答案不直接出现在中间智能体输出中时,MARTI采用了基于过程的奖励模型(AgentPRM),该方法源自SweetRL和PRIME的研究成果。
关键技术实现
- 智能体级奖励计算:对于包含L个token的智能体动作,奖励计算为:
- 交叉熵损失计算:聚合所有N个智能体的奖励计算损失:
MARTI还实现了基于树的rollout策略,在每个回合为每个智能体采样多个候选响应,使用类似DPO训练的过程对进行AgentPRM训练。
生成式奖励模型
MARTI集成了大语言模型作为生成式奖励模型(GenRM),适用于可验证和开放域问题。系统支持通过本地vLLM引擎或兼容API实现GenRM,为给定问题-轨迹对分配标量奖励。
特别值得注意的是,MARTI开发了专门针对多智能体系统的GenRM变体,能够显式处理多智能体协作中的常见失败模式,显著提升了协作行为的质量。
策略模型训练
获得包含个体轨迹和对应奖励的rollout经验后,MARTI启动分布式策略模型训练,主要特点包括:
- 算法支持:适配OpenRLHF实现,支持REINFORCE++、GRPO、PPO等多种强化学习算法
- 一致性保证:所有智能体策略使用相同的RL算法训练
- 增强策略:整合监督微调(SFT)和直接偏好优化(DPO)等模仿学习方法
- 动态选择:根据应用需求(如训练稳定性、收敛速度)动态选择训练策略
总结
MARTI项目构建了一套完整的、模块化的多智能体训练框架,从基础的规则奖励到高级的生成式评估,再到多样化的训练策略,为多智能体系统的研究和应用提供了强有力的工具支持。特别是其奖励机制设计,既考虑了即时正确性,又关注长期协作表现,在多轮交互场景中展现出显著优势。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00