YOLOv5-Net 入门教程
2024-08-08 07:53:35作者:宣利权Counsellor
本教程将引导您了解 YOLOv5-Net
开源项目,这是一个基于 C# 和 ML.NET ONNX 的 YOLOv5 对象检测实现。
1. 项目目录结构及介绍
YOLOv5-Net/
├── README.md # 项目说明文件
├── img/ # 图像资源文件夹
├── Yolov5Net.sln # 解决方案文件,包含项目集
│
├── Yolov5Net/ # 主要项目源代码
│ ├── Models/ # 存放预定义模型的类
│ │ └── YoloCocoP5Model.cs
│ │ └── YoloCocoP6Model.cs
│ ├── Scorer/ # 模型评分器,用于执行预测
│ ├── Program.cs # 应用入口点
│ └── ... # 其他相关源文件
│
└── packages.config # NuGet 包依赖
└── ... # 其他项目配置文件
Models
文件夹包含预先训练的 YOLOv5 模型的类。Scorer
文件夹包含运行对象检测的核心逻辑。Program.cs
是 C# 应用的主入口文件,通常包含示例代码以展示如何使用库。
2. 项目的启动文件介绍
Program.cs
文件是 YOLOv5-Net 示例应用的主要入口点。它包含演示如何加载和使用 YOLOv5 模型进行物体检测的代码。以下是一些关键部分:
using System;
using Yolov5Net.Scorer;
using Yolov5Net.Scorer.Models;
class Program
{
static void Main(string[] args)
{
var modelPath = "path/to/onnx/model.onnx"; // 替换为您的 ONNX 模型路径
var scorer = new YoloScorer(modelPath);
// 加载图像并检测
var image = Image.FromFile("path/to/image.jpg"); // 替换为测试图像路径
var results = scorer.Score(image);
// 显示检测结果
DisplayResults(image, results);
}
static void DisplayResults(Image image, List<DetectedObject> results)
{
// 绘制边界框和标签到原始图像
foreach (var result in results)
DrawBoundingBox(image, result);
// 显示或保存处理后的图像
// ...
}
// 边界框绘制函数
// ...
}
在此示例中,Main
方法首先创建了一个 YoloScorer
实例,接着对指定图像进行对象检测,最后显示检测结果。
3. 项目的配置文件介绍
该项目主要依赖于 NuGet 包管理器进行依赖项的安装,而不是传统的配置文件。以下是通过包管理控制台安装所需组件的命令:
对于CPU支持:
Install-Package Yolov5Net -Version 1.1.0
Install-Package Microsoft.ML.OnnxRuntime -Version 1.14.1
对于GPU支持:
Install-Package Yolov5Net -Version 1.1.0
Install-Package Microsoft.ML.OnnxRuntime.Gpu -Version 1.14.1
请注意,CPU 和 GPU 版本不能同时安装。选择适用于您硬件的正确版本。
此外,packages.config
文件记录了项目所依赖的 NuGet 包,确保在构建项目时正确安装和更新这些库。
完成上述步骤后,您可以运行 YOLOv5-Net
示例应用来体验 YOLOv5 对象检测功能。别忘了替换模型和图像的路径以匹配您的本地设置。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0286Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程中屏幕放大器知识点优化分析2 freeCodeCamp课程视频测验中的Tab键导航问题解析3 freeCodeCamp论坛排行榜项目中的错误日志规范要求4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析6 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析7 freeCodeCamp课程页面空白问题的技术分析与解决方案8 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析9 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析10 freeCodeCamp 课程中关于角色与职责描述的语法优化建议
最新内容推荐
PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
162
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15

React Native鸿蒙化仓库
C++
199
279

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16

Git4Research旨在构建一个开放、包容、协作的研究社区,让更多人能够参与到科学研究中,共同推动知识的进步。
HTML
22
1

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
950
557

基于QEMU构建的RISC-V64 SOC,支持Linux,baremetal, RTOS等,适合用来学习Linux,后续还会添加大量的controller,实现无需实体开发板,即可学习Linux和RISC-V架构
C
19
5