YOLOv5-Net 入门教程
2024-08-08 07:53:35作者:宣利权Counsellor
本教程将引导您了解 YOLOv5-Net
开源项目,这是一个基于 C# 和 ML.NET ONNX 的 YOLOv5 对象检测实现。
1. 项目目录结构及介绍
YOLOv5-Net/
├── README.md # 项目说明文件
├── img/ # 图像资源文件夹
├── Yolov5Net.sln # 解决方案文件,包含项目集
│
├── Yolov5Net/ # 主要项目源代码
│ ├── Models/ # 存放预定义模型的类
│ │ └── YoloCocoP5Model.cs
│ │ └── YoloCocoP6Model.cs
│ ├── Scorer/ # 模型评分器,用于执行预测
│ ├── Program.cs # 应用入口点
│ └── ... # 其他相关源文件
│
└── packages.config # NuGet 包依赖
└── ... # 其他项目配置文件
Models
文件夹包含预先训练的 YOLOv5 模型的类。Scorer
文件夹包含运行对象检测的核心逻辑。Program.cs
是 C# 应用的主入口文件,通常包含示例代码以展示如何使用库。
2. 项目的启动文件介绍
Program.cs
文件是 YOLOv5-Net 示例应用的主要入口点。它包含演示如何加载和使用 YOLOv5 模型进行物体检测的代码。以下是一些关键部分:
using System;
using Yolov5Net.Scorer;
using Yolov5Net.Scorer.Models;
class Program
{
static void Main(string[] args)
{
var modelPath = "path/to/onnx/model.onnx"; // 替换为您的 ONNX 模型路径
var scorer = new YoloScorer(modelPath);
// 加载图像并检测
var image = Image.FromFile("path/to/image.jpg"); // 替换为测试图像路径
var results = scorer.Score(image);
// 显示检测结果
DisplayResults(image, results);
}
static void DisplayResults(Image image, List<DetectedObject> results)
{
// 绘制边界框和标签到原始图像
foreach (var result in results)
DrawBoundingBox(image, result);
// 显示或保存处理后的图像
// ...
}
// 边界框绘制函数
// ...
}
在此示例中,Main
方法首先创建了一个 YoloScorer
实例,接着对指定图像进行对象检测,最后显示检测结果。
3. 项目的配置文件介绍
该项目主要依赖于 NuGet 包管理器进行依赖项的安装,而不是传统的配置文件。以下是通过包管理控制台安装所需组件的命令:
对于CPU支持:
Install-Package Yolov5Net -Version 1.1.0
Install-Package Microsoft.ML.OnnxRuntime -Version 1.14.1
对于GPU支持:
Install-Package Yolov5Net -Version 1.1.0
Install-Package Microsoft.ML.OnnxRuntime.Gpu -Version 1.14.1
请注意,CPU 和 GPU 版本不能同时安装。选择适用于您硬件的正确版本。
此外,packages.config
文件记录了项目所依赖的 NuGet 包,确保在构建项目时正确安装和更新这些库。
完成上述步骤后,您可以运行 YOLOv5-Net
示例应用来体验 YOLOv5 对象检测功能。别忘了替换模型和图像的路径以匹配您的本地设置。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~055CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0380- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp课程中ARIA-hidden属性的技术解析2 freeCodeCamp现金找零项目测试用例优化建议3 freeCodeCamp全栈开发课程中业务卡片设计实验的优化建议4 freeCodeCamp基础HTML测验第四套题目开发总结5 freeCodeCamp博客页面开发中锚点跳转问题的技术解析6 freeCodeCamp 前端练习:收藏图标切换器的事件委托问题解析7 freeCodeCamp 实验室项目:Event Hub 图片元素顺序优化指南8 freeCodeCamp全栈开发课程中"午餐选择器"项目的教学方法优化9 freeCodeCamp注册表单项目:优化HTML表单元素布局指南10 freeCodeCamp Markdown转换器需求澄清:多行标题处理
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
871
515

openGauss kernel ~ openGauss is an open source relational database management system
C++
131
184

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
346
380

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
334
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
31
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
603
58