在Equinox中为Module定义自定义JVP/VJP规则
概述
在JAX生态系统中,自动微分是其核心功能之一。Equinox作为构建在JAX之上的神经网络库,同样支持自动微分操作。然而,在某些特殊场景下,我们可能需要自定义前向模式微分(JVP)或反向模式微分(VJP)的行为。本文将详细介绍在Equinox模块中如何实现这一需求。
问题背景
考虑一个常见的场景:我们有一个神经网络模块,它首先对输入进行缩放处理,然后再传递给子模块。标准的自动微分会计算整个计算图的梯度,但有时我们可能希望梯度计算只针对缩放后的输入,而不是原始输入。
标准实现的问题
使用Equinox的标准实现方式如下:
class ScaledModel(eqx.Module):
sub_model: eqx.Module
scale: float = eqx.field(static=True)
def __call__(self, x):
scaled_x = x / self.scale
return self.sub_model(scaled_x)
这种实现会计算从原始输入到最终输出的完整梯度,包括缩放操作的梯度部分。但有时我们可能希望梯度计算跳过缩放操作,直接针对缩放后的输入。
自定义JVP的实现方案
由于JAX的custom_jvp装饰器不是描述符(descriptor),无法正确处理类方法的self参数,因此我们需要采用间接的方式实现:
- 首先定义一个独立的函数,并用
eqx.filter_custom_jvp装饰 - 然后在模块的
__call__方法中调用这个函数
具体实现如下:
class ScaledModel(eqx.Module):
sub_model: eqx.Module
scale: float
def __call__(self, x):
return scaled_model_forward(self, x)
@eqx.filter_custom_jvp
def scaled_model_forward(model, x):
scaled_x = x / model.scale
return model.sub_model(scaled_x)
@scaled_model_forward.def_jvp
def scaled_model_jvp(primals, tangents):
model, x = primals
primal_out = model.sub_model(x / model.scale)
_, tangent_out = jax.jvp(
model.sub_model,
(x / model.scale,),
(tangents[1] / model.scale,)
)
return primal_out, tangent_out
技术细节解析
-
装饰器选择:使用
eqx.filter_custom_jvp而非普通的jax.custom_jvp,因为前者能正确处理Equinox模块的过滤机制。 -
参数处理:在JVP函数中,
primals包含模型实例和输入数据,需要分别处理。 -
梯度计算:我们显式地计算子模块在缩放后输入处的梯度,并跳过对原始输入的梯度计算。
应用场景
这种技术特别适用于以下场景:
- 输入预处理需要从梯度计算中排除
- 需要实现特殊的梯度流动规则
- 构建具有自定义微分行为的复合模块
注意事项
-
确保自定义微分规则与数学定义一致,避免引入数值不稳定。
-
对于复杂的模块组合,需要仔细测试梯度计算的正确性。
-
考虑使用
jax.value_and_grad等工具验证自定义梯度的正确性。
总结
在Equinox中实现自定义微分规则需要绕过JAX对类方法的限制,通过外部函数的方式实现。这种方法既保持了Equinox模块的清晰结构,又提供了对微分行为的精确控制。掌握这一技术可以极大地扩展Equinox在复杂微分场景下的应用能力。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00