在Equinox中为Module定义自定义JVP/VJP规则
概述
在JAX生态系统中,自动微分是其核心功能之一。Equinox作为构建在JAX之上的神经网络库,同样支持自动微分操作。然而,在某些特殊场景下,我们可能需要自定义前向模式微分(JVP)或反向模式微分(VJP)的行为。本文将详细介绍在Equinox模块中如何实现这一需求。
问题背景
考虑一个常见的场景:我们有一个神经网络模块,它首先对输入进行缩放处理,然后再传递给子模块。标准的自动微分会计算整个计算图的梯度,但有时我们可能希望梯度计算只针对缩放后的输入,而不是原始输入。
标准实现的问题
使用Equinox的标准实现方式如下:
class ScaledModel(eqx.Module):
sub_model: eqx.Module
scale: float = eqx.field(static=True)
def __call__(self, x):
scaled_x = x / self.scale
return self.sub_model(scaled_x)
这种实现会计算从原始输入到最终输出的完整梯度,包括缩放操作的梯度部分。但有时我们可能希望梯度计算跳过缩放操作,直接针对缩放后的输入。
自定义JVP的实现方案
由于JAX的custom_jvp装饰器不是描述符(descriptor),无法正确处理类方法的self参数,因此我们需要采用间接的方式实现:
- 首先定义一个独立的函数,并用
eqx.filter_custom_jvp装饰 - 然后在模块的
__call__方法中调用这个函数
具体实现如下:
class ScaledModel(eqx.Module):
sub_model: eqx.Module
scale: float
def __call__(self, x):
return scaled_model_forward(self, x)
@eqx.filter_custom_jvp
def scaled_model_forward(model, x):
scaled_x = x / model.scale
return model.sub_model(scaled_x)
@scaled_model_forward.def_jvp
def scaled_model_jvp(primals, tangents):
model, x = primals
primal_out = model.sub_model(x / model.scale)
_, tangent_out = jax.jvp(
model.sub_model,
(x / model.scale,),
(tangents[1] / model.scale,)
)
return primal_out, tangent_out
技术细节解析
-
装饰器选择:使用
eqx.filter_custom_jvp而非普通的jax.custom_jvp,因为前者能正确处理Equinox模块的过滤机制。 -
参数处理:在JVP函数中,
primals包含模型实例和输入数据,需要分别处理。 -
梯度计算:我们显式地计算子模块在缩放后输入处的梯度,并跳过对原始输入的梯度计算。
应用场景
这种技术特别适用于以下场景:
- 输入预处理需要从梯度计算中排除
- 需要实现特殊的梯度流动规则
- 构建具有自定义微分行为的复合模块
注意事项
-
确保自定义微分规则与数学定义一致,避免引入数值不稳定。
-
对于复杂的模块组合,需要仔细测试梯度计算的正确性。
-
考虑使用
jax.value_and_grad等工具验证自定义梯度的正确性。
总结
在Equinox中实现自定义微分规则需要绕过JAX对类方法的限制,通过外部函数的方式实现。这种方法既保持了Equinox模块的清晰结构,又提供了对微分行为的精确控制。掌握这一技术可以极大地扩展Equinox在复杂微分场景下的应用能力。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00